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ABSTRACT

DGES are a crucial aspect of object and image representation and analysis. They
E separate an object from its background, highlighting the object’s surface character-
istics and defining its inter-object boundaries and internal textures. In semi-automatic
or fully automatic image analysis and understanding, edges play a significant role in the
detection and representation process. They serve as a prominent characteristic feature for

representing the shape of an object.

Magnetic resonance imaging (MRI) or nuclear magnetic resonance imaging (NMRI) is
primarily a medical imaging technique used in radiology to visualize the internal structure
of the body. MRI provides a much greater contrast between different soft tissues of the
body. This ability makes it useful for neurological, musculoskeletal, cardiovascular, and
oncological imaging. Human brain matter tissues can be categorized as White matter
(WM), Gray matter (GM), and Cerebrospinal fluid (CSF). Most of the brain structures
are anatomically defined by the edges of these tissues. Detection of these edges is an
important step for quantitative analysis of the brain and its anatomical structures. It is
also an important step for the detection of various pathological conditions affecting brain
parenchyma. It is also used for surgical planning, simulation, and three-dimensional
visualization to diagnose and detect abnormalities. It is also useful in the study of brain
development and human aging. As a result of low contrast, various sources of noise, partial
volume effects, structural variations, and various types of artifacts the edge detection

process of MRI images of the brain is non-trivial.
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ABSTRACT

Starting from the basic definition of the edge, the phenomenon of the appearance of
edges in the image, different models used to model the edge like step, ramp, line, and roof
edge models are presented. The well-known traditional edge detectors like Roberts Edge
Detector, Prewitt Edge Detector, Sobel - Feldman Edge Detector as well state of art and
cutting-edge edge detectors like Holistically-Nested Edge Detector, Richer Convolutional
Features Edge Detector, Bi-Directional Cascade Network for Perceptual Edge Detector and

Dense Extreme Inception Network Edge Detector are implemented and analyzed.

MRI images always contain a significant amount of noise caused by operator perfor-
mance, equipment, and the environment. This noise can lead to major inaccuracies in
the edge detection process and hence in segmentation results. We conduct research in
measuring the performance of Edge Detectors for edge detection in different noise levels
for MRI images. To validate the accuracy and robustness of these Edge Detectors we
carried out experiments on MRI brain scans. The performance of the edge detectors is
analyzed by different quantitative measures. These quantitative measures like accuracy
and F measure. As a result of the increasing amount of noise in the MRI image, the perfor-
mance of the edge detector degrades. The noise in the image causes spurious edges and
results in a decrease in the accuracy of the edge detector. We proposed an edge detector
with the ability to withstand the increasing amount of noise in the MRI image. We also
proposed one variation of the proposed method with a spatial variation edge detector to

improve the accuracy of the edge detector in the presence of noise.
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Chapter 1

Introduction

1.1 Magnetic Resonance Imaging

The development of magnetic resonance imaging (MRI) as a medical imaging modal-
ity has a rich history. The foundation of MRI lies in the discovery of nuclear magnetic
resonance (NMR), which was first described by Isidor Rabi in the 1930s. NMR involves
the interaction of atomic nuclei with magnetic fields, and it is the physical phenomenon
upon which MRI is based [40]. In 1946, Felix Bloch and Edward Purcell independently
conducted groundbreaking experiments that demonstrated the principles of nuclear mag-
netic resonance. Their work laid the foundation for MRI. For their contributions, they
were awarded the Nobel Prize in Physics in 1952 [3, 39]. The first MRI images of a human
were produced in 1973 by Paul Lauterbur, who used magnetic field gradients to spatially
encode the NMR signals. He is often credited with the development of MRI as an imaging
technique [23]. Echo-Planar Imaging(EPI), a fast imaging technique used in MRI, was
introduced by Peter Mansfield and his colleagues in 1977. EPI dramatically reduced imag-
ing time and opened the door to functional MRI (fMRI) and real-time imaging [31]. The
first clinical MRI scanners became available in the early 1980s. These early MRI machines

were relatively low field and low resolution compared to modern systems. Nevertheless,
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they were instrumental in advancing medical diagnosis. In the early 1990s, scientists
like Seiji Ogawa made significant contributions to the development of functional MRI
(fMRI). fMRI allows researchers to study brain function by detecting changes in blood
flow and oxygenation [34]. The development of diffusion-weighted imaging, which is
now widely used in the assessment of stroke and other neurological conditions, can be
attributed to Paul Lauterbur and Ken Kwong in the 1980s [24]. Raymond Damadian is
credited with the first use of Magnetic Resonance Spectroscopy (MRS) to detect diseases
like cancer. His work laid the groundwork for using MRI not only for anatomical imaging
but also for chemical and metabolic information [11].Progress in superconducting magnet
technology, particularly high-field magnets, has allowed for higher resolution and more
detailed imaging in MRI. MRI is a continually evolving field, with ongoing research and
development in various areas, including contrast agents, image acquisition techniques,
and clinical applications. The field of MRI has seen significant advances since its incep-
tion, making it a critical tool in medical diagnosis and research today. Researchers and

engineers continue to push the boundaries of what MRI can achieve.

1.2 Magnetic Resonance Imaging for Human Brain Under-

standing

Magnetic Resonance Imaging (MRI) is of paramount importance in brain imaging. MRI is
a non-invasive imaging technique, which means it doesn't require the use of ionizing radi-
ation (as in X-rays or CT scans) or invasive procedures. This is particularly advantageous
when imaging the delicate and vital organ like the brain. MRI provides excellent soft tissue
contrast, allowing for clear visualization of different brain structures and abnormalities.
This is crucial for diagnosing various neurological conditions, as the brain is composed
of different tissues with varying properties. MRI allows imaging in multiple planes (axial,
coronal, sagittal), which is important in the assessment of brain structures from different

perspectives and can aid in identifying the location and extent of lesions or abnormalities.



1.2 Magnetic Resonance Imaging for Human Brain Understanding

Functional MRI (fMR]) is a specialized MRI technique used to study brain function by
detecting changes in blood flow and oxygenation. It is invaluable for research and clinical
applications, such as mapping brain regions responsible for specific functions and study-
ing brain disorders. DWI is used to assess the diffusion of water molecules in brain tissue.
It is vital in the early detection of acute stroke, as changes in diffusion can indicate areas of
ischemia. MRS allows for the assessment of brain metabolites and provides information
about the biochemical composition of brain tissue. It is used to diagnose and monitor
conditions like brain tumors and metabolic disorders. MRI is an essential tool for detect-
ing various brain conditions, including tumors, vascular abnormalities, multiple sclerosis,
traumatic brain injury, and neurodegenerative diseases such as Alzheimer’s and Parkin-
son’s disease. It aids in early diagnosis and treatment planning. In some cases, MRI can
be used during neurosurgery to provide real-time images of the brain, helping surgeons
navigate and precisely target specific areas. MRI allows for the monitoring of changes in
the brain over time. This is valuable for tracking the progression of neurodegenerative
diseases and the effects of treatments. MRI is indispensable in neuroscience research,
helping scientists understand brain function, connectivity, and structural changes asso-
ciated with various conditions. It has been instrumental in advancing our knowledge of
the brain. MRI is a non-invasive and generally comfortable imaging modality, which is
particularly important when dealing with patients who may be sensitive to other imaging
techniques or those who require repeated scans for monitoring purposes. MRI plays a
critical role in brain imaging due to its ability to provide detailed and multi-dimensional
images with excellent soft tissue contrast, its non-invasiveness, and its wide range of spe-
cialized techniques for functional and metabolic assessments. It has revolutionized the
diagnosis, treatment, and research related to neurological conditions and brain function

(19].



Introduction

1.3 Noise in MR images of Human Brain

Noise in magnetic resonance imaging (MRI) refers to random variations in pixel intensity
or signal intensity that are not related to the underlying tissue characteristics but instead
arise from various sources of interference. Understanding and mitigating noise is crucial
in MR, as it can affect image quality and diagnostic accuracy. Here are the details on the

sources and types of noise in MR images.

1.3.1 Sources of Noise

* Thermal Noise (Johnson-Nyquist Noise): This type of noise arises due to the ran-
dom motion of electrons in the MRI system’s receiver components, such as the coils

and amplifiers. It is directly proportional to temperature and bandwidth.

* Shot Noise (Poisson Noise): Shot noise occurs because MRI signal intensity is
inherently quantized since it relies on the counting of individual radiofrequency

(RF) photons. It becomes more prominent at lower signal levels.

* Physiological Noise: Patient motion, physiological processes (e.g., respiration and
cardiac motion), and pulsatile blood flow can introduce noise into MRI images.

Motion artifacts can degrade image quality and lead to noise-like features.

» Susceptibility-Induced Artifacts: Variations in magnetic susceptibility between
different tissues can lead to phase errors in MRI data, resulting in image artifacts

that can resemble noise.

* Hardware-Related Noise: Imperfections in the MRI hardware, including the gradi-
ent coils and radiofrequency (RF) coils, can introduce noise. These imperfections

can vary from scanner to scanner and affect image quality.



1.4 Edge Detection for Medical Image Analysis

» Radiofrequency Interference (RFI): External sources of RF radiation, such as mobile
phones or electronic devices, can interfere with the MRI signal and introduce noise

into the images. Proper shielding is necessary to minimize RFI.

* Chemical Shift Artifacts: In MR spectroscopy, differences in the chemical shift of

protons in different molecules can lead to spectral misalignment, resembling noise.

1.3.2 Types of Noise

* Gaussian Noise: Thermal noise and shot noise typically manifest as Gaussian noise,
which follows a normal distribution. Gaussian noise is characterized by a symmetri-

cal distribution of pixel intensity variations.

* Rician Noise: In MRI, when the signal-to-noise ratio (SNR) is low, the noise may not
be purely Gaussian but instead follows a Rician distribution. Rician noise is more

prevalent in magnitude images, as opposed to complex images.

 Salt-and-Pepper Noise: Salt-and-pepper noise appears as random bright and dark
pixels in the image, resembling salt and pepper. It is often caused by malfunctioning

detector elements or data corruption.

Understanding the sources and types of noise in MRI is critical for radiologists, tech-
nologists, and researchers to interpret images accurately and improve diagnostic quality.
Additionally, ongoing research and development in MRI technology aim to further reduce

noise and enhance image quality [63, 17, 32].

1.4 Edge Detection for Medical Image Analysis

Edge detection plays a crucial role in the medical field due to its importance in image

processing and analysis. It provides valuable information and has several applications
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in medical imaging and healthcare. Edge detection helps identify and delineate the
boundaries of anatomical structures or regions of interest within medical images, such as
organs, blood vessels, tumors, and bones. This aids in diagnosis and treatment planning.
Edge detection can be used to locate the edges of tumors or lesions in medical images,
facilitating early diagnosis and precise treatment. It enables radiologists to measure the
size and extent of abnormalities. Detecting vessel edges and extracting their geometrical
information is vital for the assessment of vascular conditions. It’s used in the analysis of

blood vessels, including stenosis, aneurysms, and other vascular pathologies [50].

Edge-based segmentation techniques can be applied to separate different regions
of interest in medical images, making it easier to isolate and analyze specific structures
within an image. The detection of edges helps in extracting features from medical images
that are relevant for diagnosis and research, such as texture analysis and shape descriptors.
Edge detection can enhance image quality by emphasizing important structures and
reducing noise. This is particularly beneficial for improving the visibility of fine details.
In applications like cardiac imaging, detecting edges can be used to monitor motion
in the heart or other organs. It’s essential for assessing cardiac function and detecting
abnormalities.: When combining images from different modalities (e.g., MRI and CT),
edge detection can aid in image registration by aligning common structures, improving

the fusion of information, and facilitating multimodal analysis [8].

Edge detection techniques are used to provide real-time guidance to surgeons during
procedures by highlighting relevant structures in the surgical field. Edge-based features
are often used in Computer-Aided Diagnosis (CAD) systems to assist radiologists in making
more accurate and consistent diagnoses, particularly in fields like radiology and pathology.
Researchers use edge detection to quantify changes in medical images over time, allowing
for the study of disease progression and the evaluation of treatment effectiveness. Edge
detection is valuable in the monitoring and follow-up of patients, enabling the comparison
of images acquired at different time points to track disease progression or treatment

response. Edge detection techniques are indispensable tools in medical imaging and
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analysis. They contribute to the accurate diagnosis, treatment, and research of various
medical conditions, enhancing the capabilities of healthcare professionals and improving

patient care [64].

1.5 Overview of the Thesis

In Chapter 2, we delve into the fundamentals of edge detection, encompassing edge
concepts, edge detection techniques, and the exploration of both traditional and state-of-
the-art edge detectors. We also explore the intricacies associated with edge detection in
MR images of the human brain, shedding light on the challenges inherent in this context.
This chapter culminates in a precise problem definition, outlining the objectives of our

research, and delineating the scope of the work.

Chapter 3 focuses on the methodology employed in this study. We commence with a
comprehensive discussion of Monotonic and Bitonic signals, accompanied by graphical
representations for better understanding. Subsequently, we delve into the intricacies of
Bitonic filters. The chapter then progresses to the heart of our research, where we intro-
duce the Proposed Bitonic edge detector, offering a detailed mathematical representation.
Furthermore, we explore a structural variation of the Bitonic edge detector within the

same chapter.

In Chapter 4, we turn our attention to the experimental aspects of our study. This
chapter provides a detailed account of the experimental setup, focusing on the MR image
dataset and the associated noise characteristics. We meticulously document the outcomes
of applying both traditional edge detectors and state-of-the-art edge detectors to this
dataset. The resulting images are showcased and analyzed. Additionally, we present the
results of our Proposed Bitonic edge detector, complete with a discussion of its mathe-
matical underpinnings. Furthermore, we delve into the structural variation of the Bitonic
filter and its associated results, facilitating a comparative analysis with the outcomes of

traditional and state-of-the-art edge detectors.
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In Chapter 5, we shift our focus to the validation process of the obtained results. We
explore various metrics and measures for assessing the performance of the employed
edge detection techniques. The chapter includes a comprehensive presentation of the
performance evaluations for both traditional edge detectors and state-of-the-art alterna-
tives, conveyed through graphical representations. Additionally, we rigorously evaluate
the performance of our Proposed Bitonic edge detector and its structural variation, the
Bitonic filter. These results are discussed in detail and are subjected to a comparative

analysis against the performance of traditional and state-of-the-art edge detectors.

In Chapter 6, we draw conclusions regarding the performance of edge detectors in
the presence of increasing noise levels. This chapter encapsulates the key findings and
insights gathered from the previous chapters, shedding light on the effectiveness of edge
detection techniques under varying noise conditions. Furthermore, we explore the future
scope and potential directions for further research and development in this area within

the same chapter.



Chapter 2

Background and Literature Review

In this Chapter, we delve into the fundamentals of edge detection, encompassing edge
concepts, edge detection techniques, and the exploration of both traditional and state-of-
the-art edge detectors. We also explore the intricacies associated with edge detection in
MR images of the human brain, shedding light on the challenges inherent in this context.
This chapter culminates in a precise problem definition, outlining the objectives of our

research, and delineating the scope of the work.

2.1 Background

2.1.1 Edge

Image is defined as the two (or three) dimensional function of intensity with respect to
the spatial coordinates. These intensities are distributed over the spatial coordinates to
represent any three-dimensional object or the scene. hence the physics of the object
or the objects in the scene and the background causes discontinuity in the intensity
distribution function. This discontinuity in the intensity level of the image is called

Edge. Edge is any change of the intensity value with respect to the neighboring pixel’s
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intensities. Higher the change results in significant edges. And, lower the change results in
spurious edges. The significant edges are considered to be one of the important feature for
image characteristics representation and spurious edges may represent very low intensity
variation, low level texture or noise in the image. The spurious edges increases as the
noise level in the image increases. Hence, the significant edges increases in the image

after low-pass filtering of the image.

Edges in the image appears due to one of the three phenomena namely physical,
geometrical and non-geometrical events. The image of the physical object with the
background causes the edges between the object and the background. Here, the resulting
edges are due to the phenomenon of physical events. The object boundary, discontinuity
in the object surface and textures also appears as edges in the image. Here, the resulting
edges are due to the phenomenon of geometrical events. The shadows, internal reflections
and specularity also results as edges in the image. Here, the resulting edges are due to the

phenomenon of non-geometrical events.

2.1.2 Edge Modeling

Edges represent one of the key characteristics of the image representing the object or
scene. It is significant to identify and detect the edges in the image. As the mathematical
representation of these edges involve the complexity of representation increasing with
increasing number of pixels, makes the representation computationally complex in terms
of representation and calculation as well practical implementation and detection. To
simplify the complexities involved in representation of these edges, edges are modeled
with the simplified and minimal representational and computational expenses involved.
Based on the intensity profile these edges are modeled. These simplified models are step,

ramp, line and roof edge model [13, 37].

A step edge model is the characterization of intensity profile of the neighboring pixels

with step change in the intensities. In the figure 2.1 the one dimensional edge profile
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of step edge model is shown. The step edge occurs in the image as a result of sharp and
significant discontinuity. This edge model represents a clean and ideal edge, which results

after significant preprocessing on the obtained raw image [13, 37].

Step Edge

Fig. 2.1 The one Dimensional profile of the Step edge model

A ramp edge model is the characterization of intensity profile of the neighboring pixels
with ramp like monotonically increasing or decreasing change in the intensities.In the
figure 2.2 the one dimensional edge profile of ramp edge model is shown.The ramp edge
occurs in the image as the result of blur or defocused object. This edge model represents

the degree to which the discontinuity is blurred in the image [13, 37].

Ramp Edge

Fig. 2.2 The one Dimensional profile of the Ramp edge model

Aline edge model is the characterization of intensity profile of the pixels with bumped

line intensity profile with respect to their neighboring pixels.In the figure 2.3 the one

11
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dimensional edge profile of line edge model is shown. The line edge occurs in the image

as the result of strip, road or ridge like objects or structures [13, 37].

VNG

Line Edge

Fig. 2.3 The one Dimensional profile of the Line edge model

Aroof edge model is the catheterization of intensity profile of the neighboring pixels
with two conjugate ramp like monotonically increasing or decreasing with decreasing or
increasing change in the intensities. In the figure 2.4 the one dimensional edge profile
of roof edge model is shown. The roof edge occurs in the image as a result of pipes,

digitization of line drawings, satellite images with road like structures [13].

Roof Edge

Fig. 2.4 The one Dimensional profile of the Roof edge model

In real life situations the edges will be the mixture of above-mentioned model with

added with different noises and bias. The addition of noises and bias in the image cause

the task of edge detection to be non-trivial [13, 37].

12
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2.2 Edge Detector

The operator or algorithm used to detect the edge in the image is known as edge detector.
In simple terms, the process to detect the edge in the image is known as edge detector. It
could be as simple as a differential operation or the difference operation. Also, it could be
a highly complex algorithm with machine learning and deep learning techniques. Here,
we describe some of the well-known traditional edges detectors as well state of art and

cutting-edge edge detectors.

2.2.1 Traditional Edge Detectors

Roberts Edge Detector

The Roberts cross-gradient operator proposed by Lawrence Roberts in 1965 [41]. Itisa
discrete two-dimensional differential operator used to emphasize and detect the gradient
of the intensity function of image. The operator computes the gradient of an image
through discrete differentiation, achieved by calculating the sum of the squares of the
differences between diagonally adjacent pixels. The result of this operator corresponds
either to the intensity gradient or the norm of the intensity gradient in the image. This is
based on convolution of the image with two separable and integer valued horizontal and
vertical operators, frequently known as masks. Given the input image (x, y) of size m by

n, where x=1,2...,mand y=1,2,..., n are horizontal and vertical indices of the image.

+1 0
RF, = (2.1)
|0 -1
and
0 +1
RF, = (2.2)
-1 0]
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Where RFy and RF), are derivative approximation in horizontal and vertical direction
respectively. They are separable and integer valued small filters in horizontal and vertical
directions. By convolving the I(x, y) with G, and G, we obtain two different images with

horizontal and vertical edge approximation

Gy =1(x,y) * RF; (2.3)

and

G, =1(x,)) * RE, (2.4)

Where *is the convolution operator and G, and G, are the horizontal and vertical edge
approximations respectively. The final edge image is obtained by computing the gradient

approximation with equation:

Er(x,y) =\/G*+G)? (2.5)

The resulting image Er(x, y) is known as Roberts Edge approximation of original image
I(x,y). Due to the separable, integer valued and small size nature of this edge detection
approximation, it is relatively inexpensive in computations. Also, it produces significant
behavior in the high frequency and sharp discontinuity intensity variation in the image.
Although the formulation of Roberts edge detector approximation generally used form
two dimensional images, this edge detector approximation can be further extended to
other higher dimensions in case we have the higher dimensional image for the purpose of

multi-dimensional edge detection.

Prewitt Edge Detector

Prewitt edge detector approximation was proposed by J. M. S. Prewitt presented the idea of

an 3x3 Image Gradient Operator in 1970 [38]. It is a discrete two-dimensional differential

14
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operator used to emphasize and detect the gradient of the intensity function of image.
The result of this operator corresponds either to the intensity gradient or the norm of
the intensity gradient in the image. This is based on convolution of the image with two
separable and integer valued horizontal and vertical operators, frequently known as masks.
Given the inputimage I(x, y) of size m by n, wherex=1,2... ,nand y=1,2,...,n are horizontal

and vertical indices of the image

+1 0 -1
PFy=1+1 0 -1 (2.6)
+1 0 -1
and
+1 +1 +1
PF,=10 0 0 2.7)
-1 -1 -1

Where PF, and PF, are derivative approximation in horizontal and vertical direction
respectively. They are separable and integer valued small filters in horizontal and vertical
directions. By convolving the I(x, y) with Gy and G, we obtain two different images with

horizontal and vertical edge approximation

Gy=1(x,y)* PF, (2.8)

and

G, =I(x,y) * PF, (2.9)

Where xis the convolution operator and G and Gy, are the horizontal and vertical edge
approximations respectively. The final edge image is obtained by computing the gradient

approximation with equation:
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Ep(x,y) =1/ G* + G? (2.10)

The resulting image Ep(x, y) is known as Roberts Edge approximation of original image
I(x, y). Due to the separable, integer valued and small size nature of this edge detection
approximation, it is relatively inexpensive in computations. Also, it produces significant
behavior in the high frequency and sharp discontinuity intensity variation in the image.
Although the formulation of Roberts edge detector approximation generally used form
two dimensional images, this edge detector approximation can be further extended to
other higher dimensions in case we have the higher dimensional image for the purpose of

multi-dimensional edge detection.

Sobel-Feldman Edge Detector

One of the widely used edge detection techniques is the Sobel-Feldman Edge Detector.
The Sobel-Feldman Edge Detector is based on the Sobel operator, which uses convolution
with two 3x3 kernels to compute gradient approximations of the image in both horizontal
and vertical directions. The gradient magnitude and direction can then be calculated,

enabling edge detection [43, 42].
The kernels are as follows:

Horizontal Sobel Kernel:
-1 0 1

SFy=|-2 0 2
-1 01

Vertical Sobel Kernel:
-1 -2 -1
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Where SF, and SFy are derivative approximation in horizontal and vertical direction
respectively. They are separable and integer valued small filters in horizontal and vertical
directions. By convolving the I(x, y) with G, and G, we obtain two different images with

horizontal and vertical edge approximation

Gy =1I(x,y) * SFx (2.11)

and

Gy =I(x,y) * SF, (2.12)

Where x*is the convolution operator and G, and G, are the horizontal and vertical edge
approximations respectively. The final edge image is obtained by computing the gradient

approximation with equation:

Es(x,y) =1/G* +G)? (2.13)

The resulting image Es(x, y) is known as Sobel-Fieldman Edge approximation of origi-

nal image I(x, y).

2.2.2 State of the art Edge Detectors

Holistically-Nested Edge Detector

The Holistically-Nested Edge Detector (HED) is a deep learning-based edge detection
algorithm that was proposed by Xie et al. in 2015. HED is a two-stage detector that first

predicts a coarse edge map and then refines it to produce a fine edge map [60].

The coarse edge map is predicted using a fully convolutional network (FCN). The

FCN is trained to predict a pixel-wise probability of edge existence. The fine edge map
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is predicted using a cascade of FCNs. Each FCN in the cascade refines the edge map
produced by the previous FCN. HED has several advantages over traditional edge detection
algorithms. First, HED is able to produce more accurate edge maps, even in noisy images.
Second, HED is able to detect edges of different scales and orientations. Third, HED is

relatively fast and efficient to train and deploy.

HED has been used successfully in a variety of applications, including image segmen-

tation, object detection, and medical image analysis.
Stage 1: Coarse edge map prediction

The coarse edge map is predicted using a FCN with a large receptive field. The FCN is
trained to predict a pixel-wise probability of edge existence. The output of the FCN is a
binary image, where pixels with a high probability of edge existence are white and pixels

with a low probability of edge existence are black.
Stage 2: Fine edge map refinement

The fine edge map is predicted using a cascade of FCNs. Each FCN in the cascade
refines the edge map produced by the previous FCN. The FCNs in the cascade have smaller
receptive fields than the FCN used to predict the coarse edge map. This allows the FCNs

in the cascade to focus on detecting finer details in the edge map.

The output of the final FCN in the cascade is the fine edge map. The fine edge map
is a binary image, where pixels with a high probability of edge existence are white and
pixels with a low probability of edge existence are black. HED has been shown to be more
accurate than traditional edge detection algorithms, such as the Sobel operator and the
Canny edge detector. HED is also more robust to noise and can detect edges of different
scales and orientations. HED is a powerful edge detection algorithm that can be used in a
variety of applications. It is relatively fast and efficient to train and deploy, and it produces

accurate edge maps, even in noisy images[60].
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Richer Convolutional Features Edge Detector

The Richer Convolutional Features (RCF) Edge Detector is a deep learning-based edge
detection algorithm that was proposed by Liu et al. in 2022 [30]. RCF edge detector is an
improvement over the HED algorithm, and it is able to produce more accurate edge maps,

especially in noisy images.

RCF edge detector uses a richer set of convolutional features than HED. This allows
RCF edge detector to better capture the complex features of edges. RCF edge detector
also uses a more sophisticated loss function than HED. This loss function encourages RCF
edge detector to produce edge maps that are both accurate and smooth.RCF edge detector
uses a richer set of convolutional features than HED. This richer set of features includes

features that capture the complex features of edges, such as curvature and texture.

RCF edge detector uses a more sophisticated loss function than HED. This loss function
encourages RCF-ED to produce edge maps that are both accurate and smooth. RCF edge
detector is trained on a dataset of edge-labeled images. The training data is used to train
the RCF edge detector network to predict edge maps.Once the RCF edge detector network
is trained, it can be used to predict edge maps from new images. The RCF edge detector
network outputs a probability map, where each pixel in the map represents the probability

of an edge existing at that pixel [30].

Bi-Directional Cascade Network Perceptual Edge Detector

The Bi-directional Cascade Network (BCN) for Perceptual Edge Detection is a deep
learning-based edge detection algorithm that was proposed by He et al. in 2019 [16].
BCN is a two-stage network that first predicts a coarse edge map and then refines it to
produce a fine edge map. BCN is inspired by the observation that human perception of
edges is influenced by both low-level features, such as intensity gradients, and high-level
features, such as contextual information. To capture both low-level and high-level features,

BCN uses a bi-directional cascade architecture.

19



Background and Literature Review

In the first stage of BCN, a coarse edge map is predicted using a bottom-up approach.
The bottom-up approach starts from low-level features and gradually combines them
to extract higher-level features. In the second stage of BCN, the coarse edge map from
the first stage is refined using a top-down approach. The top-down approach starts from

high-level features and gradually combines them to refine the coarse edge map.

BCN has been shown to outperform state-of-the-art edge detection algorithms on a
variety of edge detection benchmarks. BCN is also more robust to noise and can detect

edges of different scales and orientations. Here is an overview of the BCN algorithm:

Bi-directional cascade architecture - BCN uses a bi-directional cascade architecture to
capture both low-level and high-level features. The bi-directional cascade architecture

consists of two stages: a bottom-up stage and a top-down stage.

Bottom-up stage : The bottom-up stage starts from low-level features and gradually
combines them to extract higher-level features. The bottom-up stage uses a series of
convolutional layers to extract features from the input image. The features from the
convolutional layers are then passed through a series of pooling layers to reduce the
spatial dimensions of the features. Top-down stage: The top-down stage starts from
high-level features and gradually combines them to refine the edge map. The top-down
stage uses a series of convolutional layers to extract features from the input image. The
features from the convolutional layers are then passed through a series of upsampling

layers to increase the spatial dimensions of the features.

Coarse edge map prediction : The coarse edge map is predicted using the bottom-up
stage of BCN. The coarse edge map is a binary image, where pixels with a high probability

of edge existence are white and pixels with a low probability of edge existence are black.

Fine edge map refinement : The fine edge map is refined using the top-down stage of
BCN. The top-down stage uses the coarse edge map as input and produces a refined edge
map as output. The refined edge map is more accurate than the coarse edge map and can

detect edges of different scales and orientations.
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Training and inference : BCN is trained on a dataset of edge-labeled images. The

training data is used to train the BCN network to predict edge maps.

Once the BCN network is trained, it can be used to predict edge maps from new images.
The BCN network outputs a probability map, where each pixel in the map represents the
probability of an edge existing at that pixel. BCN is a powerful edge detection algorithm
that can be used in a variety of applications. It is especially well-suited for applications
where accurate edge detection is important, such as image segmentation and object

detection [16].

Dense Extreme Inception Network Edge Detector

The Dense Extreme Inception Network (DexiNed) architecture is a combination of the
DenseNet and InceptionNet architectures. DenseNets are deep neural networks that are
connected in a dense manner, meaning that each layer is connected to all of the previous
layers. This allows DenseNets to learn long-range dependencies in the data. InceptionNets
are deep neural networks that use a combination of different convolution operations to
extract features from the data. This allows InceptionNets to extract features at different

levels of abstraction [36].

The DexiNed architecture combines the dense connectivity of DenseNets with the
feature extraction capabilities of InceptionNets. This allows DexiNed to extract both low-
level and high-level features from the input image. This is important for edge detection,

as edges can vary in scale and orientation.

Coarse edge map prediction stage : The coarse edge map prediction stage of DexiNed
uses a series of DenseNet and InceptionNet layers to extract features from the input image.
The features extracted by the DenseNet and InceptionNet layers are then passed through
a series of pooling layers to reduce the spatial dimensions of the features. This reduces
the computational cost of the network and also helps to prevent overfitting. The pooled

features are then used to predict a coarse edge map. The coarse edge map is a binary
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image, where pixels with a high probability of edge existence are white and pixels with a
low probability of edge existence are black. The coarse edge map prediction stage uses a
technique called extreme learning machines (ELMs). ELMs are a type of machine learning
algorithm that can be trained very quickly. This is important for edge detection, as edge

detection algorithms are often used in real-time applications.

Fine edge map refinement stage : The fine edge map refinement stage of DexiNed uses
a series of DenseNet and InceptionNet layers to refine the coarse edge map. The features
extracted by the DenseNet and InceptionNet layers in the fine edge map refinement stage
are then passed through a series of upsampling layers to increase the spatial dimensions
of the features. This allows the network to refine the coarse edge map at a finer level of
detail. The fine edge map refinement stage also uses a technique called skip connections.
Skip connections allow the network to learn long-range dependencies in the image data.
This helps the network to produce more accurate edge maps, especially in areas where

the edges are weak or ambiguous.

Training and inference : DexiNed is trained on a dataset of edge-labeled images. The
training data is used to train the DexiNed network to predict edge maps. Once the DexiNed
network is trained, it can be used to predict edge maps from new images. The DexiNed
network outputs a probability map, where each pixel in the map represents the probability

of an edge existing at that pixel [36].

2.3 Definition of the Problem

2.3.1 Challenges in Edge detection in MRI image of Brain

Edge detection methods for brain tissue segmentation applications are having following

problems:
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MRI images of the brain often have low contrast, which can make it difficult to

distinguish between different tissues and their structures.

MRI images can be affected by various sources of noise, such as motion artifacts,
thermal noise, and radio-frequency interference. Noise can result in spurious edges

or false positives, which can degrade the accuracy of edge detection algorithms.

In MRI images, voxels may contain a mixture of different tissues, which can result in
partial volume effects. This can make it challenging to accurately locate edges at

tissue boundaries.

The structure of the brain can vary widely across individuals, which can make
it challenging to develop edge detection algorithms that are generalizable across

different subjects.

MRI images can be affected by various types of image artifacts, such as shading
artifacts, ghosting, and ringing. These artifacts can result in false edges or edge gaps,

which can affect the accuracy of edge detection algorithms.

The spatial resolution of MRI images can affect the accuracy of edge detection

algorithms, particularly for small or subtle edges.

Edges can occur at different scales and orientations in an image. Detecting edges at
all scales and orientations requires sophisticated algorithms and a careful selection

of parameters.

Edges can be characterized by changes in intensity, but intensity variations can
occur for reasons other than edges, such as shadows, reflections, or texture. This

makes it difficult to distinguish between true edges and false edges.

Edge detection algorithms can be computationally intensive, particularly for large
or high-resolution images. This can limit their usefulness in real-time applications

or on devices with limited processing power.
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» Edge detection can be subjective and depend on the specific algorithm and parame-
ters used. Different algorithms can produce different results, and the choice of the

best algorithm often depends on the specific application

2.3.2 Problem Definition

MRI images are susceptible to noise from various sources, which can introduce spurious
edges in the resulting images. These spurious edges lead to false positives, consequently
diminishing the accuracy of edge detection algorithms. As the level of noise in MRI images
escalates, the performance of edge detectors tends to deteriorate. Therefore, there is a
growing need for edge detectors that can effectively handle the increasing noise levels

present in MRI images.

2.4 Objective and Scope of work

2.4.1 Objective of work

* To analyze the effect on the performance of edge detectors as a result of the increas-

ing amount of noise in MRI image of the human brain.

* To develop an edge detector for the detection of edges in the MRI image of the

human brain.

» To develop an edge detector with the ability to withstand the increasing amount of

noise in the MRI image of the human brain.

* To determine the performance of the developed edged detector with respect to the

increasing amount of noise in the MRI image of the human brain.
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2.4.2 Scope of work

¢ We have focused on the MRI image of the human brain.

* We have focused on determining the effect on the performance of edge detectors as

a result of the increasing amount of noise in the MRI image.

* We have focused on proposing an edge detector with the ability to withstand the

increasing amount of noise in the MRI image.
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Chapter 3

Methodology

This Chapter focuses on the methodology employed in this study. We commence with a
comprehensive discussion of Monotonic and Bitonic signals, accompanied by graphical
representations for better understanding. Subsequently, we delve into the intricacies of
Bitonic filters. The chapter then progresses to the heart of our research, where we intro-
duce the Proposed Bitonic edge detector, offering a detailed mathematical representation.
Furthermore, we explore a structural variation of the Bitonic edge detector within the

same chapter.

3.1 Monotonic and Bitonic Signals

Here, the Monotonic and Bitonic signals are described with graphical representations.

3.1.1 Monotonic Signal

A monotonic signal is a type of signal or waveform that consistently exhibits a non-
decreasing or non-increasing behavior over its entire duration. In other words, a mono-

tonic signal either continuously increases in amplitude (positive monotonic) or continu-
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ously decreases in amplitude (negative monotonic), without any significant reversals or

oscillations [18].

The monotonic signals are Non-Decreasing Monotonic Signal and Non-Increasing

Monotonic Signal.

Non-Decreasing Monotonic Signal

In 3.1 a non-decreasing monotonic signal, the amplitude (or value) of the signal remains
the same or increases as you move from the beginning to the end of the signal. There may

be minor fluctuations, but the general trend is upward or constant.

Non-Decreasing Monotonic Signal
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Fig. 3.1 The Non-Decreasing Monotonic Signal

Non-Increasing Monotonic Signal

In 3.2 a non-increasing monotonic signal, the amplitude (or value) of the signal remains
the same or decreases as you move from the beginning to the end of the signal. Similar to
non-decreasing monotonic signals, there may be minor fluctuations, but the overall trend

is downward or constant.
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Fig. 3.2 The Non-Increasing Monotonic Signal

Monotonic signals are commonly encountered in various fields, including mathemat-
ics, physics, engineering, and signal processing. They are often used in the analysis and
modeling of real-world phenomena where a consistent trend, such as growth or decay, is
observed. Monotonic signals play a crucial role in areas like data analysis, control systems,
and time-series analysis, where understanding the direction and magnitude of change is

essential [35, 18].

3.1.2 Bitonic Signal

A bitonic signal is a type of signal or waveform that exhibits a specific pattern of change in
amplitude or value. In a bitonic signal, the amplitude first continuously increases (rises)
and then continuously decreases (falls) or vice versa over its entire duration. In other
words, a bitonic signal has a single peak or valley within its waveform, and this peak or

valley is the highest or lowest point in the signal [4].

The bitonic signal shows peak or valley and symmetry properties.
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Fig. 3.3 A bitonic signal featuring only one peak
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Fig. 3.4 A bitonic signal featuring only one valley
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A bitonic signal has one and only one peak or valley. The amplitude gradually rises
to reach this peak or falls to reach this valley, and after that, it follows a decreasing or
increasing trend, respectively.In 3.3 the bitonic signal shows only one peak. In 3.4 the
bitonic signal shows only one valley. Apart from the single peak or valley, there are no other
local maxima or minima within the signal. The amplitude change is monotonic on either
side of the peak or valley. Bitonic signals often exhibit a degree of symmetry. If the signal
starts with a rising pattern, it will end with a falling pattern, and vice versa. In 3.3 and 3.4
the signals shows symmetry around the peak and the valley point respectively. Bitonic
signals are encountered in diverse fields such as mathematics, computer science, and
signal processing. They can represent phenomena like response times, sorting algorithms,

and certain types of waveforms.

The concept of bitonic signals and bitonicity has applications in various fields, includ-
ing signal processing, algorithm design, and the analysis of data with specific amplitude

patterns. [7].

3.2 Bitonic Filter

Bitonic filters are a type of nonlinear filter that is used in signal processing for noise reduc-
tion. They are based on the definition of a bitonic signal, which is a signal that has only
one local maximum or minimum within a specific range. Bitonic filters work by ranking
the data points in the signal and then replacing each data point with a combination of the
surrounding ranked data points. This process preserves any bitonic signals in the signal

while rejecting anything else [5, 46].

Bitonic filters are better at preserving edges in signals than other types of filters,
such as median filters and Gaussian filters. This is because bitonic filters are specifically
designed to preserve bitonic signals, which are signals that have only one local maximum
or minimum within a specific range. Bitonic filters are also effective at reducing noise in

signals. This is because bitonic filters reject any data points that are not part of a bitonic
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signal. Bitonic filters are applicable to a wide range of signal and noise types. This makes
them a versatile tool for signal processing applications. Bitonic filters can be used for a
variety of signal processing tasks like signal denoising, audio denoising, medical signal
processing, industrial signal processing and image denoising.Bitonic filters can be used to
reduce noise in images. Bitonic filters can be used to reduce noise in audio signals while
preserving the original sound quality. Bitonic filters can be used to improve the quality of
medical signals, such as EEG and ECG signals. Bitonic filters can be used to improve the

quality of industrial signals, such as sensor data and control signals [58, 26].

In image denoising, bitonic filters are often used to reduce noise in noisy images while
preserving edges and detail. This can be useful for improving the visual quality of images,
such as for medical imaging or industrial inspection. In audio denoising, bitonic filters
can be used to reduce noise in noisy audio signals while preserving the original sound
quality. This can be useful for improving the audio quality of music, movies, and other
audio recordings.In medical signal processing, bitonic filters can be used to improve the
quality of medical signals, such as EEG and ECG signals. This can be useful for detecting
abnormalities in medical signals and for improving the diagnostic accuracy of medical
tests [48]. In industrial signal processing, bitonic filters can be used to improve the quality
of industrial signals, such as sensor data and control signals. This can be useful for

improving the reliability and performance of industrial systems [55, 46].

3.3 Bitonic Edge Detector

Rank filters are a class of nonlinear filters that preserve monotonic signals, which are
signals that have a single local maximum or minimum within a given range. This property
makes rank filters well-suited for reducing impulsive noise, which is noise that has a sharp

change in value.

Rank filters work by ranking the data points in a local window and then selecting a

specific centile of the ranked data as the output. For example, the median filter selects the
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50" centile, which is the middle value in the ranked data. Other centiles can be selected
to achieve different noise reduction characteristics. Applying a rank filter with a centile
of 100 (a maximum, also known as a dilation) followed immediately by a rank filter with
a centile of 0 (a minimum, also known as an erosion) is called a morphological closing
operation. This operation preserves signals with a local maximum and rejects signals with
a local minimum. Reversing the order of the filters produces a morphological opening

operation, which has the opposite effect.

Morphological closing and opening operations are widely used in signal processing,
particularly for granulometry, which is the study of the size distribution of particles in a

sample.

The authors of [48, 46] propose a new type of robust opening operation that uses a
small centile ¢ instead of the minimum for the erosion step and (100 - ¢) instead of the
maximum for the dilation step. This operation is similar to the rank-max opening and
soft-opening operations, but it has some advantages. For example, it allows for more
control over impulsive noise rejection, since any impulse that takes up less than c of the

filter range will be rejected.

Let x be a signal or image, and r, . be the rank filter given by

hcentile {x;} (3.1)

Fw,e = Ct ]
iew

where ry, . is the rank filter, w is the filter window or the structuring element for the
image, | w | is the window length or the number of elements in the structuring element for

the image and c is the chosen centile.

The robust opening O,, -(x) and robust closing C,;, . can be defined as

Ouw,e (%) = 100 — € (F,e (X)) (3.2)
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Cue(X) = Fue (Fw,100 — €(x)) (3.3)
where O, (x) is the robust opening and C,, .(x) is the robust closing operation per-
formed on the signal or the image x.

let eo(x) and ec(x) be the smoothed opening and closing errors respectively defined as

€0(x) = Gg(x — Oy, (X)) | (3.4)

and

ec(x) =| GU(Cw,c(x) - X) | (3.5)

where € (x) and e¢(x) be the smoothed opening and closing errors computed over the
signal or image x respectively. And G, (x) is the Gaussian linear filter used to weight the
opening and closing operations.Here G, (x) is used to smooth the opening and closing

errors later used as weight the opening and closing errors.

Let E,,. be the Bitonic edge computed with w, the filter window or the structuring
Bitonic

element for the image, and ¢, the chosen centile. The E, . can be computed as follows:
Bitonic
dCyc(x) dOy,c(x)
€oxX)———+ec(X)———
_ dx dx
Ewe = (3.6)
Bitonic €o(x) +ec(x)

where E, . isthe Bitonic edge computed with w, the filter window or the structuring
Bitonic
element for the image, and c, the chosen centile.
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3.4 Structural Variation Bitonic Edge Detector

Adaptive morphology is a field of research that explores how to use morphological op-
erations in a more intelligent and flexible way. Traditional morphological operations
use a fixed structuring element, which can be limiting in some applications. Adaptive
morphology seeks to develop methods that can automatically adjust the structuring el-
ement based on the input data. Adaptive morphology in image processing refers to the
use of morphological operations with adaptive or variable-sized structuring elements.
Traditional morphological operations use fixed-size structuring elements, which may not
be suitable for all image processing tasks, especially when dealing with images containing

objects of varying sizes, shapes, or orientations [14, 27].

Adaptive morphology addresses these limitations by dynamically adjusting the size,
shape, or orientation of the structuring element based on local image characteristics. The
goal is to adapt the morphological operations to the specific features of the objects or

regions within the image (53, 54, 52].

Authors of [47] presented a novel morphology-based noise reduction filter called the
structurally varying bitonic filter (SVBitonic filter). The SVBitonic filter is a robust filter that
can effectively remove impulsive noise while preserving edges in images. The SVBitonic
filter works by adaptively adjusting the size and shape of its structuring element based on

the local structure of the image.

By introducing a controlling parameter m for the transition of O,, .(x) and C,,-(x), we

can write equation 3.4 as

€0 (X) =1 Gg(x = Ope(x)) | 3.7)

and equation 3.5 as
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ercn(x) =| GU(Cw,L‘(x) —X) |m (3.8)

where m is the transition controlling parameter and controls the transition of O, -(x)
and Cy,.(x). Setting m to 1 gives a gradual transition, and results in the same expression as
in equation 3.4 and equation 3.5. Where as setting m to 3 gives a more sudden transition,
which improves the performance [47]. The details on derivation of the controlling param-
eter m is discussed in details in the research work of [47]. The details on set of structuring
elements of the controlling parameter m is also discussed in details in the research work

of [47].

By considering equations 3.7 and 3.8, the Biotonic edge detector equation 3.7 becomes

the Structural Variation Bitonic Edge Detector as

d(C - dlo +
eg(x) ( w,c(x) EC) + e{’f(x) ( w,c(x) EO)
E _ ax dx
we = m m (3.9
SVBitonic €5 (x) + € (x)

where E, . represents the Structural Variation Bitonic Edge Detector computed
SVBitonic
using w as the filter window or the structuring element for the image, ¢ as the chosen

centile, and m as the transition controlling parameter.
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Chapter 4

Experimental Setup and Results

In Chapter 4, we turn our attention to the experimental aspects of our study. This chapter
provides a detailed account of the experimental setup, focusing on the MR image dataset
and the associated noise characteristics. We meticulously document the outcomes of
applying both traditional edge detectors and state-of-the-art edge detectors to this dataset.
The resulting images are showcased and analyzed. Additionally, we present the results
of our Proposed Bitonic edge detector, complete with a discussion of its mathematical
underpinnings. Furthermore, we delve into the structural variation of the Bitonic filter and
its associated results, facilitating a comparative analysis with the outcomes of traditional

and state-of-the-art edge detectors.

4.1 Dataset

As the use of computer-aided methods to analyze medical images grows, so does the
need to validate these methods. However, there is no "ground truth" or gold standard for
analyzing in vivo data. [21, 9, 10, 22] address this challenge by providing a Simulated Brain

Database (SBD). The SBD contains a set of realistic MRI data volumes generated by an
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MRI simulator. Neuroimaging researchers can use these data to evaluate the performance

of image analysis methods under known conditions [2, 1].

Simulated Brain Web: A Comprehensive Virtual Brain Database and Simulator for
Neuroimaging Research [49], describes the development of a comprehensive virtual brain
database and simulator called BrainWeb. BrainWeb is designed to provide researchers with
arealistic and customizable platform for simulating brain MRI data. The database includes
a variety of anatomical models, MRI sequences, and noise levels, allowing researchers to

create simulated data that closely resembles real-world MRI scans.

The Simulated Brain Database (SDB) of BrainWeb: A Tool for Validating and Bench-
marking Brain Image Analysis Algorithms [56], describes how BrainWeb can be used to
validate and benchmark brain image analysis algorithms. The authors demonstrate how
BrainWeb can be used to create simulated data with known ground truth, which can
then be used to evaluate the performance of different image analysis algorithms under

controlled conditions.

The SBD includes simulated brain MRI data based on two anatomical models: healthy
normal and multiple sclerosis (MS). For each model, full 3D data volumes were simulated
using three MRI sequences (T1-, T2-, and proton-density-weighted) and a variety of slice

thicknesses, noise levels, and intensity non-uniformity [49, 56].

SDB describe a valuable tool for researchers who are developing and evaluating brain
image analysis algorithms. BrainWeb provides a realistic and customizable platform for
simulating brain MRI data, which can be used to create simulated data that closely re-
sembles real-world MRI scans. This allows researchers to validate and benchmark their
algorithms under controlled conditions, which can lead to more accurate and reliable
results. [57] used the SDB to evaluate the performance of segmentation algorithms for
Alzheimer’s disease. [28] used the SDB to evaluate the performance of lesion detection
algorithms for stroke. [29] used the SDB to evaluate the performance of connectivity anal-
ysis algorithms for multiple sclerosis. [57, 28, 29] demonstrate that the SDB of BrainWeb

can be used to evaluate the performance of brain image analysis algorithms for a variety
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of neurological disorders. This can help researchers to develop more accurate and reliable

algorithms for diagnosing and monitoring these disorders.

The BrainWeb MRI image dataset is a widely used resource in the field of medical
image processing and neuroimaging research. It provides a set of simulated MRI images of
the human brain, including T1-weighted, T2-weighted, and proton density (PD)-weighted
images. These simulated images are created with carefully controlled noise levels and
other parameters to mimic real-world MRI scans. The BrainWeb dataset incorporates
Rician noise, which is a type of noise commonly observed in MRI images. Rician noise
arises due to the complex nature of MRI data, where the signal and noise components
are both complex-valued. It is characterized by a non-central chi-squared probability
distribution and can have a significant impact on image quality and analysis. One of
the strengths of the BrainWeb dataset is that it provides images with varying levels of
noise. Researchers can choose from different levels of noise to simulate MRI images
with different signal-to-noise ratios (SNR). This allows them to test the robustness and
performance of image processing algorithms under various noise conditions. Users
can adjust parameters such as the noise level, contrast, and spatial resolution when
generating images from the BrainWeb dataset. This customization capability makes
it a valuable tool for evaluating and comparing different image processing techniques.
The noise in the BrainWeb MRI dataset is generated in a way that closely resembles the
noise characteristics found in actual MRI scans. This makes it suitable for assessing the
performance of algorithms in real-world scenarios. Researchers often use the BrainWeb
MRI dataset to test and validate various image processing algorithms, including noise
reduction techniques, image segmentation methods, and image registration algorithms.
By utilizing this dataset, they can evaluate how well their algorithms perform in the
presence of realistic noise levels, helping to improve the quality and accuracy of medical
image analysis and diagnosis. In the table 4.1, the MR images for the increasing noise

levels from 0% to 9% are presented.
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Table 4.1 The Original MR images with increasing Noise percentages.

Noise (%) Original MR Image

Continue on the next page
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Table 4.1 The Original MR images with increasing Noise percentages(cont.).

Noise (%) Original MR Image
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4.2 Results of Traditional Edge Detectors

In this section, the results of different traditional edge detector on MR image dataset is
discussed. After applying the traditional edge detector to the MR image dataset, resulting

images under various noise levels are obtained.

4.2.1 Results of Roberts Edge Detector

Table 4.2 represents the results of Roberts edge detector on the MR image dataset. here,
the noise level in the MR image of the human brain is increased from 0% to 9% of the noise
level. It is observed from the resulting images that the result of Roberts edge detector
degrade as the amount of noise in the MR image dataset is increasing. The Roberts edge
detector is able to detect the edges in image when there is no noise or very low amount of
noise is in the MR image dataset. It is showing degraded results for the edge detector for
moderate amount of noise in the MR image dataset. And the edge detector performs poor
in the higher amount of the noise presents in the MR image dataset. These leads to higher
amount of spurious edges detected in the MR image dataset because of higher amount of

noise present in the MR image datasets.
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Table 4.2 Results of the Roberts Edge Detector for different noise levels in MR image .

Noise(%) Original MR Image Roberts Edge Detector

Continue on the next page
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Table 4.2 Results of the Roberts Edge Detector(cont.).

Noise(%) Original MR Image Roberts Edge Detector
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4.2.2 Results of Prewitt Edge Detector

Table 4.3 represents the results of Prewitt edge detector on the MR image dataset. here,
the noise level in the MR image of the human brain is increased from 0% to 9% of the
noise level. It is observed from the resulting images that the result of Prewitt edge detector
degrade as the amount of noise in the MR image dataset is increasing. The Prewitt edge
detector is able to detect the edges in image when there is no noise or very low amount of
noise is in the MR image dataset. It is showing degraded results for the edge detector for
moderate amount of noise in the MR image dataset. And the edge detector performs poor
in the higher amount of the noise presents in the MR image dataset. These leads to higher
amount of spurious edges detected in the MR image dataset because of higher amount of
noise present in the MR image dataset.It is observed that the results of the Prewitt edge
detector are comparatively improved than that of the Roberts edge detector of the MR

image dataset in the presence of increased amount of the noise.

Table 4.3 Results of the Prewitt Edge Detector for different noise levels in MR image.

Noise(%) Original MR Image Prewitt Edge Detector

Continue on the next page
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Table 4.3 Results of the Prewitt Edge Detector(cont.).

Noise(%) Original MR Image Prewitt Edge Detector

Continue on the next page
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Table 4.3 Results of the Prewitt Edge Detector(cont.).

Noise(%) Original MR Image Prewitt Edge Detector

4.2.3 Results of Sobel-Feldman Edge Detector

Table 4.4 represents the results of Sobel-Feldman edge detector on the MR image dataset.
here, the noise level in the MR image of the human brain is increased from 0% to 9% of
the noise level. It is observed from the resulting images that the result of Sobel-Feldman
edge detector degrade as the amount of noise in the MR image dataset is increasing. The
Sobel-Feldman edge detector is able to detect the edges in image when there is no noise
or very low amount of noise is in the MR image dataset. It is showing degraded results
for the edge detector for moderate amount of noise in the MR image dataset. And the

edge detector performs poor in the higher amount of the noise presents in the MR image
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dataset. These leads to higher amount of spurious edges detected in the MR image dataset
because of higher amount of noise present in the MR image dataset.It is observed that the
results of the Sobel-Feldman edge detector are comparatively improved than that of the
Prewitt and Roberts edge detector of the MR image dataset in the presence of increased

amount of the noise.

Table 4.4 Results of the Sobel-Feldman Edge Detector for different noise levels in MR
image.

Sobel-Feldman Edge
Noise(%) Original MR Image
Detector

Continue on the next page
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Table 4.4 Results of the Sobel-Feldman Edge Detector(cont.).

Sobel-Feldman Edge
Noise(%) Original MR Image

Detector

Continue on the next page
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Table 4.4 Results of the Sobel-Feldman Edge Detector(cont.).

Sobel-Feldman Edge
Noise (%) Original MR Image

Detector

4.3 Results of State-of-the-Art Edge Detectors

In this section, the results of different state-of-the-art edge detector on MR image dataset
is discussed. After applying the state-of-the-art edge detector to the MR image dataset,

resulting images under various noise levels are obtained.

4.3.1 Results of Holistically-Nested Edge Detector

Table 4.5 represents the results of Holistically-Nested edge detector on the MR image
dataset. here, the noise level in the MR image of the human brain is increased from
0% to 9% of the noise level. It is observed from the resulting images that the result of
Holistically-Nested edge detector degrade as the amount of noise in the MR image dataset
is increasing. The Holistically-Nested edge detector is able to detect the edges in image
when there is no noise or very low amount of noise is in the MR image dataset. Same time
itis not able to detect very finer edges in the MR image dataset. It is showing degraded

results for the edge detector for moderate amount of noise in the MR image dataset. And
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the edge detector performs poor in the higher amount of the noise presents in the MR
image dataset. These leads inability to detect the finer edges in the MR image dataset
because of higher amount of noise present in the MR image dataset.It is observed that
the results of the Holistically-Nested edge detector are comparatively improved than that
of the traditional edge detectors of the MR image dataset in the presence of increased

amount of the noise.

Table 4.5 Results of the Holistically-Nested Edge Detector for different noise levels in MR
image.

Holistically-Nested Edge
Noise(%) Original MR Image
Detector

Continue on the next page
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Table 4.5 Results of the Holistically-Nested Edge Detector(cont.).

Holistically-Nested Edge
Noise (%) Original MR Image

Detector

Continue on the next page
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Table 4.5 Results of the Holistically-Nested Edge Detector(cont.).

Holistically-Nested Edge
Noise(%) Original MR Image

Detector

4.3.2 Results of Richer Convolutional Features Edge Detector

Table 4.6 represents the results of Richer Convolutional Features edge detector on the
MR image dataset. here, the noise level in the MR image of the human brain is increased
from 0% to 9% of the noise level. It is observed from the resulting images that the result of
Richer Convolutional Features edge detector degrade as the amount of noise in the MR
image dataset is increasing. The Richer Convolutional Features edge detector is able to
detect the edges in image when there is no noise or very low amount of noise is in the
MR image dataset. Same time it is not able to detect very finer edges in the MR image
dataset. It is showing degraded results for the edge detector for moderate amount of noise
in the MR image dataset. And the edge detector performs poor in the higher amount
of the noise presents in the MR image dataset. These leads inability to detect the finer
edges in the MR image dataset because of higher amount of noise present in the MR
image dataset.It is observed that the results of the Richer Convolutional Features edge

detector are comparatively improved than that of the traditional edge detectors as well as
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the Holistically-Nested edge detector of the MR image dataset in the presence of increased
amount of the noise.

Table 4.6 Results of the Richer Convolutional Features Edge Detector for different noise
levels in MR image.

Richer Convolutional

Noise(%) Original MR Image
Features Edge Detector

Continue on the next page
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Table 4.6 Results of the Richer Convolutional Features Edge Detector(cont.).

Richer Convolutional
Noise(%) Original MR Image

Features Edge Detector

Continue on the next page
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Table 4.6 Results of the Richer Convolutional Features Edge Detector(cont.).

Richer Convolutional
Noise (%) Original MR Image

Features Edge Detector

4.3.3 Results of Bi-Directional Cascade Network Perceptual Edge Detec-

tor

Table 4.7 represents the results of Bi-Directional Cascade Network Perceptual edge detec-
tor on the MR image dataset. here, the noise level in the MR image of the human brain
is increased from 0% to 9% of the noise level. It is observed from the resulting images
that the result of Bi-Directional Cascade Network Perceptual edge detector degrade as
the amount of noise in the MR image dataset is increasing. The Bi-Directional Cascade
Network Perceptual edge detector is able to detect the edges in image when there is no
noise or very low amount of noise is in the MR image dataset. Same time it is not able
to detect very finer edges in the MR image dataset. It is showing degraded results for the
edge detector for moderate amount of noise in the MR image dataset. And the edge detec-
tor performs poor in the higher amount of the noise presents in the MR image dataset.
These leads inability to detect the finer edges in the MR image dataset because of higher
amount of noise present in the MR image dataset.It is observed that the results of the

Bi-Directional Cascade Network Perceptual edge detector are comparatively improved
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than that of the traditional edge detectors as well as the Holistically-Nested edge detector
and Richer Convolutional Features edge detector of the MR image dataset in the presence

of increased amount of the noise.

Table 4.7 Results of the Bi-Directional Cascade Network Perceptual Edge Detector for
different noise levels in MR image.

Bi-Directional Cascade

Noise(%) Original MR Image Network Perceptual Edge

Detector

Continue on the next page
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Table 4.7 Results of the Bi-Directional Cascade Network Perceptual Edge Detector(cont.).

Bi-Directional Cascade

Noise(%) Original MR Image Network Perceptual Edge

Detector

Continue on the next page
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Table 4.7 Results of the Bi-Directional Cascade Network Perceptual Edge Detector(cont.).

Bi-Directional Cascade

Noise(%) Original MR Image Network Perceptual Edge

Detector

4.3.4 Results of Dense Extreme Inception Network Edge Detector

Table 4.8 represents the results of Dense Extreme Inception Network edge detector on the
MR image dataset. here, the noise level in the MR image of the human brain is increased
from 0% to 9% of the noise level. It is observed from the resulting images that the result
of Dense Extreme Inception Network edge detector degrade as the amount of noise in
the MR image dataset is increasing. The Dense Extreme Inception Network edge detector
is able to detect the edges in image when there is no noise or very low amount of noise
is in the MR image dataset. Same time it is not able to detect very finer edges in the MR
image dataset. It is showing degraded results for the edge detector for moderate amount
of noise in the MR image dataset. And the edge detector performs poor in the higher
amount of the noise presents in the MR image dataset. These leads inability to detect the
finer edges in the MR image dataset because of higher amount of noise present in the MR
image dataset.It is observed that the results of the Dense Extreme Inception Network edge

detector are comparatively improved than that of the traditional edge detectors as well as
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the Holistically-Nested edge detector, Richer Convolutional Features edge detector and
Bi-Directional Cascade Network Perceptual edge detector of the MR image dataset in the

presence of increased amount of the noise.

Table 4.8 Results of the Dense Extreme Inception Network Edge Detector for different
noise levels in MR image.

Dense Extreme Inception

Noise(%) Original MR Image
Network Edge Detector

Continue on the next page
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Table 4.8 Results of the Dense Extreme Inception Network Edge Detector(cont.).

Dense Extreme Inception
Noise(%) Original MR Image

Network Edge Detector

Continue on the next page
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Table 4.8 Results of the Dense Extreme Inception Network Edge Detector(cont.).

Dense Extreme Inception
Noise (%) Original MR Image

Network Edge Detector

4.4 Results of Bitonic Edge Detector

In this section, the results of proposed Bitonic edge detector on MR image dataset is
discussed. After applying the Bitonic edge detector to the MR image dataset, resulting

images under various noise levels are obtained.

Table 4.9 represents the results of Bitonic edge detector on the MR image dataset. here,
the noise level in the MR image of the human brain is increased from 0% to 9% of the
noise level. It is observed from the resulting images that the result of Bitonic edge detector
degrade as the amount of noise in the MR image dataset is increasing. The Bitonic edge
detector is able to detect the edges in image when there is no noise or very low amount
of noise is in the MR image dataset. Same time it is also able to detect very finer edges in
the MR image dataset. It is showing improved results for the edge detector for moderate
amount of noise in the MR image dataset. And the edge detector performs satisfactory
in the higher amount of the noise presents in the MR image dataset. These leads better
ability to detect the finer edges in the MR image dataset because of higher amount of

noise present in the MR image dataset.It is observed that the results of the Bitonic edge
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detector are comparatively improved than that of the traditional edge detectors as well as
the state-of-the-art edge detectors of the MR image dataset in the presence of increased

amount of the noise.

Table 4.9 Results of the Bitonic Edge Detector for different noise levels in MR image.

Noise(%) Original MR Image Bitonic Edge Detector

Continue on the next page
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Table 4.9 Results of the Bitonic Edge Detector(cont.).

Noise(%) Original MR Image Bitonic Edge Detector

Continue on the next page
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Table 4.9 Results of the Bitonic Edge Detector(cont.).

Noise(%) Original MR Image Bitonic Edge Detector

4.5 Results of Structural Variation Bitonic Edge Detector

In this section, the results of structural variation of the proposed Bitonic edge detector
on MR image dataset is discussed. After applying the Structural Variation Bitonic edge

detector to the MR image dataset, resulting images under various noise levels are obtained.

Table 4.10 represents the results of Structural Variation Bitonic edge detector on the
MR image dataset. here, the noise level in the MR image of the human brain is increased
from 0% to 9% of the noise level. It is observed from the resulting images that the result
of Structural Variation Bitonic edge detector degrade as the amount of noise in the MR
image dataset is increasing. The Structural Variation Bitonic edge detector is able to detect
the edges in image when there is no noise or very low amount of noise is in the MR image
dataset. Same time it is also able to detect very finer edges in the MR image dataset. It
is showing improved results for the edge detector for moderate amount of noise in the
MR image dataset. And the edge detector performs satisfactory in the higher amount
of the noise presents in the MR image dataset. These leads better ability to detect the
finer edges in the MR image dataset because of higher amount of noise present in the

MR image dataset.It is observed that the results of the Structural Variation Bitonic edge
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detector are comparatively improved than that of the traditional edge detectors as well as

the state-of-the-art edge detectors and Bitonic of the MR image dataset in the presence of
increased amount of the noise.

Table 4.10 Results of the Structural Variation Bitonic Edge Detector for different noise
levels in MR image.

Structural Variation

Noise(%) Original MR Image
Bitonic Edge Detector

Continue on the next page
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Table 4.10 Results of the Structural Variation Bitonic Edge Detector(cont.).

Structural Variation
Noise(%) Original MR Image

Bitonic Edge Detector

Continue on the next page
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Table 4.10 Results of the Structural Variation Bitonic Edge Detector(cont.).

Structural Variation
Noise (%) Original MR Image

Bitonic Edge Detector
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Chapter 5

Validation and Performance Evaluation of

Edge Detectors

This chapter is dedicated to the validation and performance evaluation of the edge detec-
tor when applied to MR images. The process involves running the edge detector on the MR
image dataset and obtaining resulting images under various noise levels. Subsequently,

these results are rigorously validated against a ground truth dataset.

We conduct a comprehensive comparison of the results obtained from different edge
detectors against the ground truth dataset. The comparison involves the computation
of various performance evaluation measures, including Accuracy and F-measure. This
allows us to assess the performance of both traditional and state-of-the-art edge detectors

in the context of increasing noise levels.

Furthermore, this chapter also encompasses the performance evaluation of the Pro-
posed Bitonic edge detector and its structural variation, the Bitonic edge detector. The

goal is to evaluate their effectiveness in mitigating the impact of noise on edge detection.
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5.1 Validation

Validation is of paramount importance in the results of an edge detector applied to
an MR image dataset of the human brain. Validation helps assess the accuracy of the
detected edges. It allows to determine how well the edge detector is identifying the true
boundaries and edges within the brain tissue. This is crucial for ensuring the reliability of
subsequent analyses or medical diagnoses that depend on these edges. Different edge
detection algorithms may yield different results, and validation helps in comparing their
performance. It enables to choose the most suitable algorithm for a specific task or dataset.
This is especially important in medical imaging, where the accuracy of edge detection
can impact patient diagnosis and treatment planning. Validation allows to evaluate how
well the edge detector performs under various noise levels. MRI images can be affected by
different types and levels of noise, and understanding how the edge detector responds
to noise is essential for robust image analysis. Many edge detection algorithms have
adjustable parameters (e.g., threshold values, kernel sizes). Validation helps in fine-tuning
these parameters to optimize edge detection results. This ensures that the algorithm is

performing at its best on the specific dataset [12, 44].

Validation typically involves comparing the detected edges to a ground truth or manu-
ally annotated edges. This ground truth can be created by experts who manually outline
brain structures. Comparing the automated results to the ground truth allows you to
quantify the algorithm’s accuracy and identify any discrepancies. Validation results can
indicate how well the edge detector generalizes to different brain images and datasets.
This information is valuable for understanding the algorithm’s applicability beyond the
specific dataset used for training or testing. In scientific research, validation is critical
for establishing the credibility of your findings. It demonstrates that o ne methodology
is sound and that results are reliable, increasing the trustworthiness of your research
within the scientific community. In the context of medical imaging, the validation of

edge detection algorithms is crucial for ensuring that the extracted information can be
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used in clinical settings. Accurate edge detection can aid in the diagnosis and treatment
planning of neurological disorders and brain-related conditions. Validation in the results
of an edge detector applied to MR images of the human brain is essential for assessing
accuracy, robustness, and generalizability. It ensures that the algorithm performs reliably
and can be trusted for both research and clinical applications, ultimately contributing to

the advancement of medical image analysis and patient care .

It is important to validate the results of edge detectors in brain MR images because
edge detectors are often used as a pre-processing step for other image processing tasks,
such as segmentation and registration. If the edge detector is not accurate, it can lead to

errors in the subsequent tasks [62].

There are a number of different ways to validate the results of edge detectors in brain
MR images. One common approach is to use a ground truth image, which is an image that
has been manually labeled by an expert. The edge detector output can then be compared

to the ground truth image to assess its accuracy .

Another approach to validation is to use a cross-validation scheme. In this approach,
the MR image dataset is divided into two sets: a training set and a test set. The edge
detector is trained on the training set and then evaluated on the test set. This approach

helps to avoid overfitting of the edge detector to the training data [61, 6].

It is important to note that there is no single "best" way to validate the results of edge
detectors in brain MR images. The best approach will depend on the specific application

and the available resources.

5.2 Performance Evaluation

As MRI images are vital for clinical diagnosis and medical research, ensuring their quality
is paramount. Noise in these images can introduce artifacts and reduce the clarity of struc-

tures, potentially affecting their diagnostic value. Performance evaluation helps assess the
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quality of edge detection in noisy MR images. Accurate edge detection is crucial for tasks
like tumor detection, lesion localization, and anatomical feature extraction. Noise can
lead to false positives or negatives, compromising the diagnostic accuracy. Performance
evaluation ensures that edge detectors can provide reliable results under various noise
conditions. In medical research, the validity of results is essential. Researchers often use
edge detection techniques to analyze brain structures and changes. Reliable performance
evaluation ensures that research outcomes are trustworthy, especially when studying
diseases or conducting clinical trials. In clinical settings, where MRI plays a pivotal role in
patient care, accurate edge detection is essential. It assists in surgical planning, treatment
monitoring, and disease progression assessment. Noise can lead to incorrect clinical
decisions, making performance evaluation critical. The performance evaluation of edge
detectors in the presence of increasing noise can help identify which algorithms or tech-
niques are most robust. This knowledge can guide the selection and optimization of
edge detection methods for specific MRI applications. Understanding how edge detectors
perform in noisy MRI images can inspire further research and the development of more
robust algorithms. It can also lead to innovations in noise reduction techniques, making
MRI analysis more reliable. Healthcare institutions and research organizations allocate
resources based on the quality and reliability of their tools. Performance evaluation helps
ensure that resources are used efficiently, and investments in MRI technology and soft-
ware yield reliable results.The performance evaluation of edge detectors in the presence
of increasing noise is essential for ensuring the reliability, accuracy, and clinical relevance
of MRI image analysis, benefiting both medical diagnosis and research in the field of

neuroimaging.

5.2.1 Confusion matrix of Classification

A confusion matrix is a square matrix with dimensions N x N, where N is the number

of classes or categories in the classification problem. Each row of the matrix represents
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Table 5.1 Confusion matrix of Classification

Ground Truth

Positive Negative
Positive TP FP
Negative FN TN

Observed \ Predicted

the instances in an actual (true) or ground truth class, while each column represents the

instances in a observed or predicted class [15, 33].

The elements of the Table 5.1 confusion matrix of classification problem represents

the following:

True Positives (TP) : Instances correctly predicted as positive
True Negatives (TN) : Instances correctly predicted as negative
False Positives (FP) : Instances incorrectly predicted as positive (Type I Error)

False Negatives (FN) : Instances incorrectly predicted as negative (Type II Error)

5.2.2 Measures for the Performance Evaluation

Using the components from the confusion matrix in Table 5.1, various performance

metrics like Accuracy, Precision, Recall, Specificity and F-measure can be defined.

* Accuracy measures the overall correctness of predictions:

TP+TN
TP+TN+FP+FN

Accuracy =

* Precision measures the accuracy of positive predictions:

TP

Precision= ——
TP+FP
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» Recall (Sensitivity or True Positive Rate) measures the ability to capture positive

instances:
TP

Recall = ———
TP+FN

* Specificity (True Negative Rate) measures the ability to capture negative instances:

TN

SpECiﬁCity = m

* F-measure is the harmonic mean of precision and recall, balancing their trade-off:

2 - Precision - Recall

F-measure = —
Precision + Recall

Accuracy is easy to understand and interpret. It represents the proportion of correctly
classified instances out of the total number of instances. For many stakeholders, including
non-technical ones, accuracy provides a clear and intuitive measure of a model’s perfor-
mance. Accuracy gives a broad view of how well the classification model is performing
across all classes. It provides a single number that summarizes the model'’s correctness
in making predictions, which is useful for an overall assessment of the model’s quality.
Accuracy serves as a baseline or reference point for comparing different models or vari-
ations of a model. When one develops a new classification algorithm or make changes
to an existing one, we can compare their accuracies to determine which one performs
better. Accuracy is often used as a quick initial assessment metric. If a model has very

high accuracy, it’s an indication that it's performing well [15, 33].

The F-measure, which is the harmonic mean of precision and recall, can be a useful
metric in the context of an edge detection problem. Edge detection is often a trade-off
between detecting as many true edges as possible (high recall) while minimizing the
inclusion of false edges (high precision). The F-measure, being the harmonic mean of
precision and recall, balances these two conflicting objectives. It helps you find an optimal

trade-off between precision and recall, ensuring that both are considered when evaluating
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the algorithm’s performance. In edge detection, both false positives (detecting edges
where there are none) and false negatives (missing actual edges) have implications for the
quality of the result. The F-measure takes into account both types of errors, giving you a
comprehensive view of the algorithm’s effectiveness in detecting edges and minimizing
errors. The F-measure provides a single value that quantifies the quality of edge detection,
making it easier to compare different edge detection algorithms or parameter settings. It
encapsulates the algorithm’s ability to identify edges accurately while avoiding spurious

edge detection [15, 33, 51].

The application of the confusion matrix and performance metrics like Accuracy, Preci-

sion, Recall, Specificity and F-measure are discussed in details in [45, 59, 20, 25].

5.3 Performance Evaluation of Traditional Edge Detectors

5.3.1 Performance Evaluation of Roberts Edge Detector

Accuracy of Roberts Edge Detector

Figure 5.1 illustrates the relationship between the accuracy of the Roberts edge detector
and varying noise levels within the MR image dataset. On the y-axis, we depict the accuracy
of the Roberts edge detector, quantified as the percentage of correctly identified edges
among the entire set of detected edges.The graph’s compelling insight is the pronounced
decline in accuracy as the noise levels escalate. This finding underscores the limited
robustness of the Roberts edge detector in the presence of noise, as its accuracy diminishes
significantly under such conditions. Furthermore, it's worth noting that the observed trend
is nonlinear, indicating that the accuracy’s descent is not uniform across different noise
levels. In fact, the graph exhibits a concave downward shape, signifying that the rate of
accuracy decline accelerates as noise levels increase. This heightened sensitivity to noise

suggests that alternative edge detection methods may be necessary when dealing with

75



Validation and Performance Evaluation of Edge Detectors

noisy MR image datasets. The Roberts edge detector’s performance is notably affected by
noise in the MR image dataset, as evidenced by the graph’s trends. Its limited robustness
underscores the importance of considering noise-reduction techniques or alternative

detectors for improved accuracy in such scenarios.
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Fig. 5.1 The impact of noise on the accuracy of Roberts edge detector in MR image

F-measure of Roberts Edge Detector

Figure 5.2 illustrates the relationship between the F-measure of the Roberts edge detec-
tor and varying noise levels within the MR image dataset. On the y-axis, we depict the
F-measure of the Roberts edge detector, combines the precision and recall into a single
metric to provide a balanced measure of performance for edge detector. The F-measure
of the Roberts edge detector decreases with increasing noise level. This suggests that the
Roberts edge detector is not very robust to noise. At a noise level of 0%, the F-measure
of the Roberts edge detector is relatively low. At a noise level of 9%, the F-measure of
the Roberts edge detector is very low. A decrease in the F-measure with increasing noise
levels is expected. Noise can introduce spurious edges or blur existing edges, making edge

detection more challenging. As the noise level increases, it becomes harder for the algo-
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rithm to distinguish between genuine edges and noise-induced artifacts. Consequently,
both precision and recall tend to decrease, leading to a lower F-measure. This decrease in
F-measure suggests that the ability of Roberts edge detector to accurately detect edges
deteriorates as noise is introduced into the image. This decrease in F-measure suggests
that the algorithm’s ability to accurately detect edges deteriorates as noise is introduced

into the image.
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Fig. 5.2 The impact of noise on the F-measure of Roberts edge detector in MR image

5.3.2 Performance Evaluation of Prewitt Edge Detector

Accuracy of Prewitt Edge Detector

Figure 5.3 illustrates the relationship between the accuracy of the Prewitt edge detector
and varying noise levels within the MR image dataset. On the y-axis, we depict the accuracy
of the Prewitt edge detector, quantified as the percentage of correctly identified edges
among the entire set of detected edges.The graph’s compelling insight is the pronounced
decline in accuracy as the noise levels escalate. This finding underscores the limited

robustness of the Prewitt edge detector in the presence of noise, as its accuracy diminishes
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significantly under such conditions. Furthermore, it's worth noting that the observed
trend is nonlinear, indicating that the accuracy’s descent is not uniform across different
noise levels. In fact, the graph exhibits a concave downward shape, signifying that the
rate of accuracy decline accelerates as noise levels increase. This heightened sensitivity to
noise suggests that alternative edge detection methods may be necessary when dealing
with noisy MR image datasets. The Prewitt edge detector’s performance is notably affected
by noise and shows improved than Roberts edge detector in the MR image dataset, as
evidenced by the graph’s trends. Its limited robustness underscores the importance of
considering noise-reduction techniques or alternative detectors for improved accuracy in

such scenarios.
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Fig. 5.3 The impact of noise on the accuracy of Prewitt edge detector in MR image

F-measure of Prewitt Edge Detector

Figure 5.4 illustrates the relationship between the F-measure of the Prewitt edge detector
and varying noise levels within the MR image dataset. On the y-axis, we depict the F-
measure of the Prewitt edge detector, combines the precision and recall into a single metric

to provide a balanced measure of performance for edge detector. The F-measure of the
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Prewitt edge detector decreases with increasing noise level. This suggests that the Prewitt
edge detector is not very robust to noise. At a noise level of 0%, the F-measure of the Prewitt
edge detector is relatively low. At a noise level of 9%, the F-measure of the Prewitt edge
detector is very low. A decrease in the F-measure with increasing noise levels is expected.
Noise can introduce spurious edges or blur existing edges, making edge detection more
challenging. As the noise level increases, it becomes harder for the algorithm to distinguish
between genuine edges and noise-induced artifacts. Consequently, both precision and
recall tend to decrease, leading to a lower F-measure. This decrease in F-measure suggests
that the ability of Prewitt edge detector to accurately detect edges deteriorates as noise
is introduced into the image. This decrease in F-measure suggests that the algorithm’s
ability to accurately detect edges deteriorates as noise is introduced into the image. It is
observed that the F-measure values of the Prewitt edge detector are improved than that of

the Roberts edge detector.
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Fig. 5.4 The impact of noise on the F-measure of Prewitt edge detector in MR image
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5.3.3 Performance Evaluation of Sobel-Feldman Edge Detector

Accuracy Sobel-Feldman Edge Detector

Figure 5.5 illustrates the relationship between the accuracy of the Sobel-Feldman edge
detector and varying noise levels within the MR image dataset. On the y-axis, we depict
the accuracy of the Sobel-Feldman edge detector, quantified as the percentage of correctly
identified edges among the entire set of detected edges.The graph’s compelling insight is
the pronounced decline in accuracy as the noise levels escalate. This finding underscores
the limited robustness of the Sobel-Feldman edge detector in the presence of noise, as
its accuracy diminishes significantly under such conditions. Furthermore, it’s worth
noting that the observed trend is nonlinear, indicating that the accuracy’s descent is not
uniform across different noise levels. In fact, the graph exhibits a concave downward
shape, signifying that the rate of accuracy decline accelerates as noise levels increase. This
heightened sensitivity to noise suggests that alternative edge detection methods may be
necessary when dealing with noisy MR image datasets. The Sobel-Feldman edge detector’s
performance is notably affected by noise and shows improved than Roberts and Prewitt
edge detector in the MR image dataset, as evidenced by the graph’s trends. Its limited
robustness underscores the importance of considering noise-reduction techniques or

alternative detectors for improved accuracy in such scenarios.

F-measure Sobel-Feldman Edge Detector

Figure 5.6 illustrates the relationship between the F-measure of the Sobel-Feldman edge
detector and varying noise levels within the MR image dataset. On the y-axis, we depict
the F-measure of the Sobel-Feldman edge detector, combines the precision and recall
into a single metric to provide a balanced measure of performance for edge detector. The
F-measure of the Sobel-Feldman edge detector decreases with increasing noise level. This

suggests that the Sobel-Feldman edge detector is not very robust to noise. At a noise level
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Sobel Noise Level(%) Vs Accuracy
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Fig. 5.5 The impact of noise on the accuracy of Sobel-Feldman edge detector in MR image

of 0%, the F-measure of the Sobel-Feldman edge detector is relatively low. At a noise level
of 9%, the F-measure of the Sobel-Feldman edge detector is very low. A decrease in the
F-measure with increasing noise levels is expected. Noise can introduce spurious edges or
blur existing edges, making edge detection more challenging. As the noise level increases,
it becomes harder for the algorithm to distinguish between genuine edges and noise-
induced artifacts. Consequently, both precision and recall tend to decrease, leading to a
lower F-measure. This decrease in F-measure suggests that the ability of Sobel-Feldman
edge detector to accurately detect edges deteriorates as noise is introduced into the image.
This decrease in F-measure suggests that the algorithm’s ability to accurately detect edges
deteriorates as noise is introduced into the image. It is observed that the F-measure values
of the Sobel-Feldman edge detector are improved than that of the Roberts edge detector

and the Prewitt edge detector.
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Sobel Noise Level(%) Vs Fmeasure
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Fig. 5.6 The impact of noise on the F-measure of Sobel-Feldman edge detector in MR
image

5.4 Performance Evaluation of State-of-the-Art Edge Detec-

tors

5.4.1 Performance Evaluation of Holistically-Nested Edge Detector

Accuracy of Holistically-Nested Edge Detector

Figure 5.7 illustrates the relationship between the accuracy of the Holistically-Nested edge
detector and varying levels of noise within the MR image dataset. The y-axis represents
the accuracy of the Holistically-Nested edge detector, quantified as the percentage of
correctly identified edges among all detected edges. The graph reveals a significant trend
— a notable decrease in accuracy as the noise levels increase. This observation highlights
the improved, albeit limited, robustness of the Holistically-Nested edge detector in the
presence of noise. Its accuracy diminishes progressively under such conditions. It’s

important to note that the observed trend is nonlinear, indicating that the decline in
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accuracy is not uniform across different noise levels. In fact, the graph takes on a convex
upward shape, suggesting that the rate of accuracy decline slows down as noise levels
increase. This reduced sensitivity to noise implies that alternative edge detection methods
may be more suitable when working with noisy MR image datasets. The performance of
the Holistically-Nested edge detector is affected by noise, although it exhibits improved
performance compared to traditional edge detectors in the MR image dataset, as indicated
by the graph’s trends. Its enhanced but still affected robustness emphasizes the need
to explore noise-reduction techniques or consider alternative detectors for achieving

improved accuracy in such scenarios.
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Fig. 5.7 The impact of noise on the accuracy of Holistically-Nested edge detector in MR
image

F-measure of Holistically-Nested Edge Detector

Figure 5.8 illustrates the relationship between the F-measure of the Holistically-Nested
edge detector and varying noise levels within the MR image dataset. On the y-axis, we
depict the F-measure of the Holistically-Nested edge detector, combines the precision and

recall into a single metric to provide a balanced measure of performance for edge detector.
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The F-measure of the Holistically-Nested edge detector decreases with increasing noise
level. This suggests that the Holistically-Nested edge detector is not very robust to noise. At
anoise level of 0%, the F-measure of the Holistically-Nested edge detector is relatively high.
At a noise level of 9%, the F-measure of the Holistically-Nested edge detector is relatively
low. A decrease in the F-measure with increasing noise levels is expected. Noise can
introduce spurious edges or blur existing edges, making edge detection more challenging.
As the noise level increases, it becomes harder for the algorithm to distinguish between
genuine edges and noise-induced artifacts. Consequently, both precision and recall tend
to decrease, leading to a decrease in F-measure. This decrease in F-measure suggests
that the ability of Holistically-Nested edge detector to accurately detect edges deteriorates
as noise is introduced into the image. This decrease in F-measure suggests that the
algorithm’s ability to accurately detect edges deteriorates as noise is introduced into the
image. It is observed that the F-measure values of the Holistically-Nested edge detector

are improved than that of the traditional edge detectors.
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Fig. 5.8 The impact of noise on the F-measure of Holistically-Nested edge detector in MR
image
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5.4.2 Performance Evaluation of Richer Convolutional Features Edge

Detector

Accuracy of Richer Convolutional Features Edge Detector

Figure 5.9 illustrates the relationship between the accuracy of the Richer Convolutional
Features and varying levels of noise within the MR image dataset. The y-axis represents the
accuracy of the Richer Convolutional Features, quantified as the percentage of correctly
identified edges among all detected edges. The graph reveals a significant trend — a
notable decrease in accuracy as the noise levels increase. This observation highlights the
improved, albeit limited, robustness of the Richer Convolutional Features in the presence
of noise. Its accuracy diminishes progressively under such conditions. It's important to
note that the observed trend is nonlinear, indicating that the decline in accuracy is not
uniform across different noise levels. In fact, the graph takes on a convex upward shape,
suggesting that the rate of accuracy decline slows down as noise levels increase. This
reduced sensitivity to noise implies that alternative edge detection methods may be more
suitable when working with noisy MR image datasets. The performance of the Richer
Convolutional Features is affected by noise, although it exhibits improved performance
compared to traditional edge detectors and Holistically-Nested edge detector in the MR
image dataset, as indicated by the graph’s trends. Its enhanced but still affected robust-
ness emphasizes the need to explore noise-reduction techniques or consider alternative

detectors for achieving improved accuracy in such scenarios.

F-measure of Richer Convolutional Features Edge Detector

Figure 5.10 illustrates the relationship between the F-measure of the Richer Convolutional
Features edge detector and varying noise levels within the MR image dataset. On the y-axis,
we depict the F-measure of the Richer Convolutional Features edge detector, combines

the precision and recall into a single metric to provide a balanced measure of performance
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RCF Noise Level(%) Vs Accuracy
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Fig.5.9 The impact of noise on the accuracy of Richer Convolutional Features edge detector
in MR image

for edge detector. The F-measure of the Richer Convolutional Features edge detector
decreases with increasing noise level. This suggests that the Richer Convolutional Features
edge detector is not very robust to noise. At a noise level of 0%, the F-measure of the
Richer Convolutional Features edge detector is relatively high. At a noise level of 9%, the
F-measure of the Richer Convolutional Features edge detector is relatively low. A decrease
in the F-measure with increasing noise levels is expected. Noise can introduce spurious
edges or blur existing edges, making edge detection more challenging. As the noise level
increases, it becomes harder for the algorithm to distinguish between genuine edges and
noise-induced artifacts. Consequently, both precision and recall tend to decrease, leading
to a decrease in F-measure. This decrease in F-measure suggests that the ability of Richer
Convolutional Features to accurately detect edges deteriorates as noise is introduced into
the image. This decrease in F-measure suggests that the algorithm’s ability to accurately
detect edges deteriorates as noise is introduced into the image. It is observed that the
F-measure values of the Richer Convolutional Features edge detector are improved than

that of the traditional edge detectors and the Holistically-Nested edge detector.
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RCF Noise Level(%) Vs Fmeasure
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Fig. 5.10 The impact of noise on the F-measure of Richer Convolutional Features edge
detector in MR image

5.4.3 Performance Evaluation of Bi-Directional Cascade Network Per-

ceptual Edge Detector

Accuracy of Bi-Directional Cascade Network Perceptual Edge Detector

Figure 5.11 illustrates the relationship between the accuracy of the Bi-Directional Cascade
Network Perceptual edge detector and varying levels of noise within the MR image dataset.
The y-axis represents the accuracy of the Bi-Directional Cascade Network Perceptual edge
detector, quantified as the percentage of correctly identified edges among all detected
edges. The graph reveals a significant trend — a notable decrease in accuracy as the noise
levels increase. This observation highlights the improved, albeit limited, robustness of
the Bi-Directional Cascade Network Perceptual edge detector in the presence of noise. Its
accuracy diminishes progressively under such conditions. It's important to note that the
observed trend is nonlinear, indicating that the decline in accuracy is not uniform across
different noise levels. In fact, the graph takes on a convex upward shape, suggesting that

the rate of accuracy decline slows down as noise levels increase. This reduced sensitivity
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to noise implies that alternative edge detection methods may be more suitable when
working with noisy MR image datasets. The performance of the Bi-Directional Cascade
Network Perceptual edge detector is affected by noise, although it exhibits improved
performance compared to traditional edge detectors, Holistically-Nested edge detector
and Richer Convolutional Features edge detector in the MR image dataset, as indicated
by the graph’s trends. Its enhanced but still affected robustness emphasizes the need
to explore noise-reduction techniques or consider alternative detectors for achieving

improved accuracy in such scenarios.
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Fig. 5.11 The impact of noise on the accuracy of Bi-Directional Cascade Network Percep-
tual edge detector in MR image

F-measure of Bi-Directional Cascade Network Perceptual Edge Detector

Figure 5.12 illustrates the relationship between the F-measure of the Bi-Directional Cas-
cade Network Perceptual edge detector and varying noise levels within the MR image
dataset. On the y-axis, we depict the F-measure of the Bi-Directional Cascade Network Per-
ceptual edge detector, combines the precision and recall into a single metric to provide a

balanced measure of performance for edge detector. The F-measure of the Bi-Directional

88



5.4 Performance Evaluation of State-of-the-Art Edge Detectors

Cascade Network Perceptual edge detector decreases with increasing noise level. This
suggests that the Bi-Directional Cascade Network Perceptual edge detector is not very
robust to noise. At a noise level of 0%, the F-measure of the Bi-Directional Cascade Net-
work Perceptual edge detector is relatively high. At a noise level of 9%, the F-measure of
the Bi-Directional Cascade Network Perceptual edge detector is relatively low. A decrease
in the F-measure with increasing noise levels is expected. Noise can introduce spurious
edges or blur existing edges, making edge detection more challenging. As the noise level
increases, it becomes harder for the algorithm to distinguish between genuine edges and
noise-induced artifacts. Consequently, both precision and recall tend to decrease, leading
to a decrease in F-measure. This decrease in F-measure suggests that the ability of Bi-
Directional Cascade Network Perceptual to accurately detect edges deteriorates as noise is
introduced into the image. This decrease in F-measure suggests that the algorithm’s ability
to accurately detect edges deteriorates as noise is introduced into the image. It is observed
that the F-measure values of the Bi-Directional Cascade Network Perceptual edge detector
are improved than that of the traditional edge detectors, the Holistically-Nested edge

detector and Richer Convolutional Features edge detector.
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Fig. 5.12 The impact of noise on the F-measure of Bi-Directional Cascade Network Percep-
tual edge detector in MR image
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5.4.4 Performance Evaluation of Dense Extreme Inception Network

Edge Detector

Accuracy of Dense Extreme Inception Network Edge Detector

Figure 5.13 illustrates the relationship between the accuracy of the Dense Extreme Incep-
tion Network edge detector and varying levels of noise within the MR image dataset. The
y-axis represents the accuracy of the Dense Extreme Inception Network edge detector,
quantified as the percentage of correctly identified edges among all detected edges. The
graph reveals a significant trend — a notable decrease in accuracy as the noise levels
increase. This observation highlights the improved, albeit limited, robustness of the
Dense Extreme Inception Network edge detector in the presence of noise. Its accuracy
diminishes progressively under such conditions. It’s important to note that the observed
trend is nonlinear, indicating that the decline in accuracy is not uniform across different
noise levels. In fact, the graph takes on a convex upward shape, suggesting that the rate of
accuracy decline slows down as noise levels increase. This reduced sensitivity to noise
implies that alternative edge detection methods may be more suitable when working with
noisy MR image datasets. The performance of the Dense Extreme Inception Network
edge detector is affected by noise, although it exhibits improved performance compared
to traditional edge detectors, Holistically-Nested edge detector, Richer Convolutional
Features edge detector and Bi-Directional Cascade Network Perceptual edge detector
in the MR image dataset, as indicated by the graph’s trends. Its enhanced but still af-
fected robustness emphasizes the need to explore noise-reduction techniques or consider

alternative detectors for achieving improved accuracy in such scenarios.

F-measure of Dense Extreme Inception Network Edge Detector

Figure 5.14 illustrates the relationship between the F-measure of the Dense Extreme

Inception Network edge detector and varying noise levels within the MR image dataset.
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DexiNed Noise Level(%) Vs Accuracy
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Fig. 5.13 The impact of noise on the accuracy of Dense Extreme Inception Network edge
detector in MR image

On the y-axis, we depict the F-measure of the Dense Extreme Inception Network edge
detector, combines the precision and recall into a single metric to provide a balanced
measure of performance for edge detector. The F-measure of the Dense Extreme Inception
Network edge detector decreases with increasing noise level. This suggests that the Dense
Extreme Inception Network edge detector is not very robust to noise. At a noise level of 0%,
the F-measure of the Dense Extreme Inception Network edge detector is relatively high. At
a noise level of 9%, the F-measure of the Dense Extreme Inception Network edge detector
is relatively low. A decrease in the F-measure with increasing noise levels is expected.
Noise can introduce spurious edges or blur existing edges, making edge detection more
challenging. As the noise level increases, it becomes harder for the algorithm to distinguish
between genuine edges and noise-induced artifacts. Consequently, both precision and
recall tend to decrease, leading to a decrease in F-measure. This decrease in F-measure
suggests that the ability of Dense Extreme Inception Network to accurately detect edges
deteriorates as noise is introduced into the image. This decrease in F-measure suggests
that the algorithm’s ability to accurately detect edges deteriorates as noise is introduced

into the image. It is observed that the F-measure values of the Dense Extreme Inception
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Network edge detector are improved than that of the traditional edge detectors, the
Holistically-Nested edge detector, Richer Convolutional Features edge detector and Bi-

Directional Cascade Network Perceptual edge detector.
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Fig. 5.14 The impact of noise on the F-measure of Dense Extreme Inception Network edge
detector in MR image

5.5 Performance Evaluation of Bitonic Edge Detector

Accuracy of Bitonic Edge Detector

Figure 5.15 visually represents the interplay between the accuracy of the Bitonic edge
detector and varying levels of noise within the MR image dataset. The y-axis represents the
accuracy of the Bitonic edge detector, quantified as the percentage of correctly identified
edges among all detected edges. Notably, the graph reveals an intriguing trend — a slight
decrease in accuracy as noise levels increase. This observation underscores the Bitonic
edge detector's commendable robustness when confronted with noise. Its accuracy
experiences a marginal dip in such conditions. Crucially, this observed trend is non-linear,

indicating that the slight decrease in accuracy is not uniform across different noise levels.
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In fact, the graph assumes a convex upward shape, implying that the rate of accuracy
decline decelerates as noise levels rise. This reduced slight sensitivity to noise suggests
that, when operating with noisy MR image datasets, Bitonic edge detection methods
may be more suitable. Comparatively, the Bitonic edge detector’s performance in the
presence of noise is slightly affected, yet it outperforms traditional edge detectors and
the Holistically-Nested edge detector, Richer Convolutional Features edge detector, Bi-
Directional Cascade Network Perceptual edge detector, and Dense Extreme Inception
Network edge detector within the MR image dataset, as evidenced by the trends depicted
in the graph. Its improved robustness makes the Bitonic edge detector important for edge

detection in the MR image dataset in the presence of noise.

— Bitonic Noise Level(%) Vs Accuracy

Accuracy

0.755

0.75

0.745

Accuracy

0.74
0.735
0.73

0.725
0 1 2 3 4 5 6 7 8 9
Noise Level in Percentage

Fig. 5.15 The impact of noise on the accuracy of Bitonic edge detector in MR image

F-measure of Bitonic Edge Detector

Figure 5.16 illustrates the relationship between the F-measure of the Bitonic edge detector
and varying noise levels within the MR image dataset. On the y-axis, we depict the F-
measure of the Bitonic edge detector, combines the precision and recall into a single

metric to provide a balanced measure of performance for edge detector. The F-measure
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of the Bitonic edge detector slightly decreases with increasing noise level. This suggests
that the Bitonic edge detector is very robust to noise. At a noise level of 0%, the F-measure
of the Bitonic edge detector is relatively high. At a noise level of 9%, the F-measure
of the Bitonic edge detector is slightly low. A very less decrease in the F-measure with
increasing noise levels is observed. Noise can introduce spurious edges or blur existing
edges, making edge detection more challenging. As the noise level increases, it becomes
harder for the algorithm to distinguish between genuine edges and noise-induced artifacts.
Consequently, both precision and recall tend to decrease, leading to a slight decrease in
F-measure. This decrease in F-measure suggests that the ability of Bitonic to accurately
detect edges deteriorates as noise is introduced into the image. This slight decrease in
F-measure suggests that the algorithm’s ability to accurately detect edges deteriorates as
noise is introduced into the image. It is observed that the F-measure values of the Bitonic
edge detector are improved than that of the traditional edge detectors, the Holistically-
Nested edge detector, Richer Convolutional Features edge detector, Bi-Directional Cascade
Network Perceptual edge detector and Dense Extreme Inception Network edge detector.
Its improved robustness makes the Bitonic edge detector important for edge detection in

the MR image dataset in the presence of noise.
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Fig. 5.16 The impact of noise on the F-measure of Bitonic edge detector in MR image
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5.6 Performance Evaluation of Structural Variation Bitonic

Edge Detector

Accuracy of Structural Variation Bitonic Edge Detector

Figure 5.15 visually represents the interplay between the accuracy of the Structural Varia-
tion Bitonic edge detector and varying levels of noise within the MR image dataset. The
y-axis represents the accuracy of the Structural Variation Bitonic edge detector, quantified
as the percentage of correctly identified edges among all detected edges. Notably, the
graph reveals an intriguing trend — a slight decrease in accuracy as noise levels increase.
This observation underscores the Structural Variation Bitonic edge detector’s commend-
able robustness when confronted with noise. Its accuracy experiences a marginal dip in
such conditions. Crucially, this observed trend is non-linear, indicating that the slight de-
crease in accuracy is not uniform across different noise levels. In fact, the graph assumes
a convex upward shape, implying that the rate of accuracy decline decelerates as noise
levels rise. This reduced slight sensitivity to noise suggests that, when operating with noisy
MR image datasets, Structural Variation Bitonic edge detection methods may be more
suitable. Comparatively, the Structural Variation Bitonic edge detector’s performance in
the presence of noise is slightly affected, yet it outperforms traditional edge detectors
and the Holistically-Nested edge detector, Richer Convolutional Features edge detector,
Bi-Directional Cascade Network Perceptual edge detector, and Dense Extreme Inception
Network edge detector and Bitonic edge detector within the MR image dataset, as evi-
denced by the trends depicted in the graph. Its improved robustness makes the Structural
Variation Bitonic edge detector important for edge detection in the MR image dataset in

the presence of noise.
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Fig. 5.17 The impact of noise on the accuracy of Structural Variation Bitonic edge detector
in MR image
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Fig.5.18 The impact of noise on the F-measure of Structural Variation Bitonic edge detector
in MR image
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F-measure of Structural Variation Bitonic Edge Detector

Figure 5.18 illustrates the relationship between the F-measure of the Structural Variation
Bitonic edge detector and varying noise levels within the MR image dataset. On the y-axis,
we depict the F-measure of the Structural Variation Bitonic edge detector, combines the
precision and recall into a single metric to provide a balanced measure of performance for
edge detector. The F-measure of the Structural Variation Bitonic edge detector slightly
decreases with increasing noise level. This suggests that the Structural Variation Bitonic
edge detector is very robust to noise. At a noise level of 0%, the F-measure of the Structural
Variation Structural Variation Bitonic edge detector is relatively high. At a noise level
of 9%, the F-measure of the Structural Variation Bitonic edge detector is slightly low. A
very less decrease in the F-measure with increasing noise levels is observed. Noise can
introduce spurious edges or blur existing edges, making edge detection more challenging.
As the noise level increases, it becomes harder for the algorithm to distinguish between
genuine edges and noise-induced artifacts. Consequently, both precision and recall tend
to decrease, leading to a slight decrease in F-measure. This decrease in F-measure suggests
that the ability of Structural Variation Bitonic to accurately detect edges deteriorates as
noise is introduced into the image. This slight decrease in F-measure suggests that the
algorithm’s ability to accurately detect edges deteriorates as noise is introduced into
the image. It is observed that the F-measure values of the Structural Variation Bitonic
edge detector are improved than that of the traditional edge detectors, the Holistically-
Nested edge detector, Richer Convolutional Features edge detector, Bi-Directional Cascade
Network Perceptual edge detector and Dense Extreme Inception Network edge detector
and Bitonic edge detector. Its improved robustness makes the Structural Variation Bitonic
edge detector important for edge detection in the MR image dataset in the presence of

noise.
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Chapter 6

Conclusion and Future Scope

In Chapter 6, we draw conclusions regarding the performance of edge detectors in the
presence of increasing noise levels. This chapter encapsulates the key findings and insights
gathered from the previous chapters, shedding light on the effectiveness of edge detection
techniques under varying noise conditions. Furthermore, we explore the future scope and
potential directions for further research and development in this area within the same

chapter.

6.1 Conclusion

In our comprehensive study, we undertook a rigorous investigation to enhance the ac-
curacy and F-measure of edge detection in magnetic resonance (MR) image datasets,
particularly in the presence of escalating levels of noise. This endeavor is of paramount
importance in the realm of medical image analysis, where edge detection serves as a
fundamental tool for various clinical applications. The ability to accurately detect edges
in MR images is crucial for tasks such as delineating anatomical structures, localizing
pathologies, and characterizing diseases. However, the challenge of noise in MR images

has long been acknowledged as a significant obstacle. Noise can severely impair the
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performance of edge detection algorithms, compromising their precision and recall. By
improving the robustness of edge detection algorithms in the presence of noise, we aim
to enhance the overall accuracy and F-measure of medical image analysis. This, in turn,
can lead to more precise clinical diagnoses and more effective treatment plans. Our study
represents a significant step forward in the field of medical imaging, with the potential to

improve patient outcomes and advance the practice of medicine.

Through a meticulous examination of both traditional and state-of-the-art edge de-
tection algorithms, we conducted a thorough investigation into their performance when
applied to MR image datasets in the presence of varying levels of noise. This detailed anal-
ysis has not only provided a comprehensive understanding of existing methodologies but
has also allowed us to identify key areas for improvement. Our research has contributed
novel insights and advanced methodologies to address the challenges posed by noise in
MR image analysis. By delving deeply into the performance measurement of these edge
detectors, we have been able to their accuracy and F-measure in noisy environments.
These contributions are poised to have a significant impact on the field, offering new
approaches to improve the detection of edges in MR images and thus advancing the
capabilities of medical image analysis. Throughout our research endeavors, several key
findings have emerged, highlighting the importance of robust edge detection algorithms
in clinical applications. These findings have important implications for the future of edge
detection in MR image analysis, paving the way for the development of more effective and

reliable tools for medical professionals.

Our investigations have confirmed the inherent sensitivity of widely used traditional
edge detectors, such as the Roberts edge detector, Prewitt edge detector, and Sobel-
Feldman edge detector, to varying levels of noise within MR image datasets. Additionally,
we explored the performance of state-of-the-art edge detectors, including the Holistically-
Nested edge detector, Richer Convolutional Features edge detector, Bi-Directional Cascade
Network Perceptual edge detector, and Dense Extreme Inception Network edge detector,

under similar conditions. Our findings revealed a significant decline in accuracy and
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F-measure as noise levels increased. This sensitivity to noise underscores the need for
tailored solutions that can preserve edge detection accuracy in the presence of noise.
These results highlight the challenges faced by existing edge detection algorithms when
applied to noisy MR image datasets and emphasize the importance of developing robust
algorithms that can effectively handle noise while maintaining high levels of accuracy.
This thesis makes a significant contribution to the field of medical image analysis by
introducing a novel and robust edge detector specifically designed to operate effectively
in the presence of noise in magnetic resonance (MR) images. The proposed Bitonic edge
detector represents a pioneering approach, offering a new benchmark for the development
of future noise-robust edge detection algorithms in the presence of noise in magnetic

resonance (MR) images.

By addressing the challenges posed by noise in MR images, the Bitonic edge detector
opens up new possibilities for improving the accuracy and F-measure of edge detection in
medical imaging. Its effectiveness in noisy environments pave the way for the develop-
ment of more advanced and noise-robust edge detection techniques in the presence of
noise in magnetic resonance (MR) images, ultimately leading to enhanced diagnostic ca-
pabilities and improved patient care. The introduction of the Bitonic edge detector marks
a significant advancement in the field of medical image analysis, offering a promising
solution to a longstanding challenge. Its success serves as a testament to the potential of
innovative algorithms in overcoming complex problems in medical imaging and under-
scores the importance of continued research and development in this critical area. The
clinical implications of this work are profound, as accurate edge detection in magnetic res-
onance (MR) images is essential for various aspects of medical practice, including disease
diagnosis, surgical planning, and treatment monitoring. The introduction of noise-robust
edge detectors, such as the Bitonic and Structural variation Bitonic edge detectors, has

the potential to significantly enhance the quality of care delivered to patients.

Accurate edge detection is crucial for identifying anatomical structures and abnor-

malities in MR images, which is essential for making accurate diagnoses and developing
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effective treatment plans. By improving the accuracy and F-measure of edge detection
in MR images, noise-robust edge detectors can help clinicians make more informed
decisions, leading to more accurate diagnoses and improved treatment outcomes. Fur-
thermore, noise-robust edge detectors can also streamline the process of surgical planning
by providing clearer delineation of structures, reducing the risk of errors during proce-
dures. Additionally, in treatment monitoring, these detectors can help track changes
in anatomical structures over time, allowing for more effective evaluation of treatment
efficacy. Overall, the introduction of noise-robust edge detectors in MR image analysis has
the potential to significantly improve patient care by enabling more accurate diagnoses,

enhancing surgical planning, and improving treatment monitoring.

In summary, this thesis represents a significant advancement in the field of edge
detection in MR image datasets affected by escalating levels of noise. Our research not
only addresses the immediate challenge of noise but also heralds the emergence of noise-
robust solutions in medical imaging, promising transformative implications for healthcare.
Looking ahead, our vision is to cultivate a healthcare ecosystem where the analysis of MR
images transcends mere precision to become a driving force in elevating the standards of
care. By enhancing the accuracy and F-measure of edge detection in MR images, we aim
to improve patient outcomes, facilitate more accurate diagnoses, and push the boundaries
of medical science. Our work underscores the importance of continued research and
innovation in medical imaging, paving the way for a future where healthcare is more

precise, personalized, and effective.

6.2 Future Scope

Edge detection in MR image datasets is a critical task in medical image analysis. This task
becomes especially challenging when images are affected by increasing levels of noise.
Here, we explore the future scope and potential research directions for noise robust edge

detection algorithms in MR imaging.
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Adaptive Noise Robust Algorithms: Develop edge detection algorithms that adapt to
varying noise profiles and levels, utilizing machine learning and statistical modeling

to autonomously adjust parameters.

Deep Learning Advancements: Explore advanced deep learning architectures, such
as recurrent neural networks (RNNs) and attention mechanisms, for noise-resilient

edge detection. Investigate transfer learning and domain adaptation techniques.

Real-Time Edge Detection: Optimize edge detection algorithms for real-time or
near real-time processing on modern hardware. Consider hardware acceleration

(e.g., GPUs or TPUs) for efficiency.

Multi-Modal Integration: Investigate approaches to seamlessly integrate data from

multiple imaging modalities (e.g., MR, CT, PET) to improve edge detection accuracy.

Clinical Validation: Collaborate with healthcare institutions to conduct extensive
clinical validation of noise robust edge detection algorithms in real-world clinical

scenarios.

User-Friendly Software Tools: Develop user-friendly software tools with intuitive
interfaces, visualization features, and automation capabilities to assist clinicians

and researchers.

Benchmarking Challenges and Datasets: Create standardized benchmark datasets
and organize challenges focused on noise robust edge detection. Encourage open-

source solutions.

Explainability and Interpretability: Address the need for explainability and in-
terpretability, particularly in a medical context, when integrating deep learning

techniques.

Resource-Constrained Environments: Optimize edge detection algorithms for

deployment on low-power devices, facilitating edge detection at the point of care.
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* Ethical and Privacy Considerations: Develop algorithms that adhere to privacy

regulations while maintaining high performance in handling sensitive medical data.

The future scope in the field of edge detection for MR image datasets in the presence
of increasing noise levels is vast and promising. Advancements in adaptive algorithms,
deep learning, real-time applications, clinical validation, and user-friendly tools will be
pivotal in addressing the challenges posed by noise in MR imaging. Collaboration between
researchers, healthcare professionals, and technology providers will be instrumental in
driving these advancements and ultimately improving patient care in the field of medical

imaging.
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